Аппроксимация точек прямой. Аппроксимация опытных данных. Метод наименьших квадратов. Добавление линии тренда к рядам данных

Кафедра: ________Информатики и компьютерных технологий _______________

КУРСОВАЯ РАБОТА

по дисциплине _______________ИНФОРМАТИКА __________________________

(наименование учебной дисциплины согласно учебному плану)

ЗАДАНИЕ

студенту группы МГП-12 Румянцева Н.А.

(шифр группы) (Ф.И.О.)

1. Тема работы: _Реализация численного метода средствами Microsoft Excel и с помощью средств пакета MathCAD

2. Исходные данные к работе: _Вариант № 17__________________________________

4. Перечень графического материала: _Представление результатов в виде экранных форм________________________________ ____________________________________

5. Срок сдачи законченной работы: ___01.05.2013г. ____________________________

Руководитель работы: ________ ______________ /_________/

(должность) (подпись) (Ф.И.О.)

Дата выдачи задания: __15.02.2013 г. ______________


Аннотация

Пояснительная записка представляет собой отчет о выполнении курсовой работы. В ней рассматриваются вопросы по нахождению эмпирических формул методом наименьших квадратов (МНК) посредством возможностей пакета Microsoft Excel, а также рассматривается решение данной задачи в пакете MathCAD. В работе получены уравнения различных видов с помощью аппроксимации линейной, квадратичной и экспоненциальной зависимостей. По окончании работы сделан вывод, каким методом задача решена лучше всего.

Страниц 24, таблиц 3, рисунков 14, приложений 0.

Abstract

The explanatory note represents the report on term paper performance. In it questions on a finding of empirical formulas by a method of the least squares (МНК) by means of possibilities of package Microsoft Excel are considered, and also the decision of the given problem in Turbo Pascal 7.0 is considered. In work the equations of various kinds by means of approximation linear, square-law and экспоненциальной dependences are received. Upon termination of work the conclusion is drawn, the problem is solved by what method is better.

Pages 24, tables 3, figures 14, appendixes 0.

Аннотация. 2

Введение. 4

Постановка задачи. 5

Общие сведения. 6

Линейная зависимость. 7

Нелинейная зависимость. 7

Исходные данные. 10

Расчет аппроксимаций в табличном процессоре Excel 11

Построение графиков. 17

Функция ЛИНЕЙН.. 18

Выполнение аппроксимации в программе MathCAD.. 19

Введение. 19

Линейная аппроксимация в программе MathCAD.. 21

Экспоненциальная аппроксимация в программе MathCAD.. 22

Полиномальная (квадратичная аппроксимация в программе MathCAD.. 23

Список литературы.. 24

Введение

Аппроксимация (от латинского "approximare" -"приближаться") – научный метод, суть которого состоит в замене одних, известных значений, другими, приближёнными и более простыми. Эти простые значения должны удовлетворять некой зависимости, нахождение которой, в целом, и есть конечная цель этого метода.

Известно, что функциональная зависимость между величинами может быть либо точной (этот случай характерен для теоретических измышлений), либо приближённой (что более характерно для экспериментально полученных данных). Эта неточность, отклонение полученного значения от искомой зависимости, на графике выражающаяся в разбросе точек на некотором расстоянии от кривой (здесь я немного забегаю вперёд) может иметь несколько причин:

1. Погрешности прямых измерений (приборные), ошибки, допускаемые человеком (здесь я, конечно, не говорю о грубых ошибках, дающих значительные отклонения).

2. Несовершенством человеческих знаний о природе – отнюдь не все современные научные концепции позволяют точно рассчитать какие-либо значения для реальных случаев – многие из них направлены на случаи идеальные.

3. Сложностью и изменчивостью самой природы (особенно – живой). Например, в случае проведения социологических исследований, точное совпадение экспериментальных данных с теоретическими вовсе и не требуется – даже незначительная корелляция результатов эксперимента с ожидаемыми закономерностями уже может сказать специалистам о многом.

При выборе аппроксимации следует исходить из конкретной задачи исследования. Обычно, чем более простое уравнение используется для аппроксимации, тем более приблизительно получаемое описание зависимости. Поэтому важно считывать, насколько существенны и чем обусловлены отклонения конкретных значений от получаемого тренда. При описании зависимости эмпирически определенных значений можно добиться и гораздо большей точности, используя какое-либо более сложное, многопараметрическое уравнение. Однако нет никакого смысла стремиться с максимальной точностью передать случайные отклонения величин в конкретных рядах эмпирических данных. Гораздо важнее уловить общую закономерность, которая в данном случае наиболее логично и с приемлемой точностью выражается именно двухпараметрическим уравнением степенной функции. Таким образом, выбирая метод аппроксимации, исследователь всегда идет на компромисс: решает, в какой степени в данном случае целесообразно и уместно «пожертвовать» деталями и, соответственно, насколько обобщенно следует выразить зависимость сопоставляемых переменных. Наряду с выявлением закономерностей, замаскированных случайными отклонениями эмпирических данных от общей закономерности, аппроксимация позволяет также решать много других важных задач: формализовать найденную зависимость; найти неизвестные значения зависимой переменной путем интерполяции или, если это допустимо, экстраполяции.


Постановка задачи

1. Используя метод наименьших квадратов функцию , заданную таблично, аппроксимировать

а) многочленом первой степени ;

б) многочленом второй степени ;

в) экспоненциальной зависимостью .

2. Для каждой зависимости вычислить коэффициент детерминированности.

3. Вычислить коэффициент корреляции (только в случае а).

4. Для каждой зависимости построить линию тренда.

5. Используя функцию ЛИНЕЙН вычислить числовые характеристики зависимости y от x .

6. Сравнить свои вычисления с результатами, полученными при помощи функции ЛИНЕЙН.

7. Сделать вывод, какая из полученных формул наилучшим образом аппроксимирует функцию .

8. Выполнить обработку заданных экспериментальных данных с использованием встроенных функций интерполяции (аппроксимации) и регрессии пакета MathCAD и сравнить результаты с результатами, полученными в Microsoft Excel.


Общие сведения

При экспериментальном изучении функциональной зависимости y = f(x) производят измерения величины y при различных значениях величины x. Результаты представляют в виде таблицы 1 или графически.

X x 1 x 2 ××× x n
Y x 1 Y 2 ××× y n

Таблица 1

Задача заключается в аналитическом представлении искомой функциональной зависимости, т.е. в подборе формулы, описывающей результаты эксперимента. Эмпирическую формулу обычно выбирают из достаточно узкого класса функций, рассматривая, например, множество функций линейных, степенных, показательных и т.п. При этом руководствуются какими либо теоретическими соображениями или соображениями простоты представления эмпирического материала. Найденная эмпирическая формула должна быть такой, чтобы вычисленные по ней значения функций при X=x i возможно мало отличалось бы от опытных данных y i (i = 1, 2, …,n).

Обозначим выбранную функциональную зависимость

будет минимальной. Таким образом, параметры а 1 , а 2 , …, а m определяются из условия, чтобы сумма квадратов отклонений измеренных значений y i от принимала наименьшее значение.

Используя необходимые условия экстремума функции нескольких переменных, получим нормальную систему для определения коэффициентов а 1 , а 2 , …, а m

где а1, а2 –неизвестные параметры, а система (1.3) примет вид

где a, b –постоянные причем x > 0 и y > 0.

Логарифмируя равенство (1.2.1), получим

и применив формулы (1.1.2), найдем значения параметров b и u, а затем значение параметра а.

Показательную зависимость

Полагая v = lny, c = lna, Y = x, получим линейную зависимость

Таблица №3.6

Чем меньше значение Q, тем лучше соответствует эмпирическая формула экспериментальным данным.


В каждом задании требуется методом наименьших квадратов найти теоретическую функциональную зависимость для функции, заданной таблично. В качестве теоретической функциональной зависимости использовать:

– Многочлен первой степени ,

Показательную функцию ,

– Степенную функцию ,

– Многочлен второй степени .

Для каждой зависимости найти теоретическое значение функции, сумму квадратов отклонений эмпирических значений функции от теоретических значений, указать наименьшее значение этой величины и аппроксимирующую функцию, которой оно соответствует. Построить линию тренда для каждой зависимости и показать уравнение этой линии на диаграмме. Показать на диаграмме величину коэффициента детерминированности R 2 . Этот коэффициент вычисляется по формуле

, (2.1)

где -заданные значения функции,

Теоретические значения функции,

Среднее арифметическое значение, i = 1, 2, …,n.

Если коэффициент детерминированности равен 1, то теоретические и эмпирические значения функции полностью совпадают. Если коэффициент

детерминированности равен 0, то теоретическая зависимость выбрана неудачно.

Исходные данные

Был проведён некоторый эксперимент. Его результаты записаны в виде таблицы, где x i – величина, задаваемая исследователем (например – концентрация реагентов в химическом растворе), y i – измеренная величина (в нашем примере это может быть скорость протекания реакции).

x i y i x i y i x i y i x i y i x i y i
0.21 1.62 4.98 40.09 7.96 63.31 12.33 97.77 17.32 126.45
1.19 8.65 5.49 43.56 8.32 67.45 13.21 105.34 18.43 144.34
2.43 16.76 6.07 48.45 9.43 72.87 14.72 112.56 19.38 160.45
3.12 24.45 6.81 52.21 10.21 81.34 15.53 121.89 20.45 161.34
4.54 32.87 7.21 57.34 11.54 89.45 16.23 108.54 21.22 170.59

Таблица 2

Расчет аппроксимаций в табличном процессоре Excel

Рассмотрим гильбертово пространство действительных функций, интегрируемых с квадратом с весом на . Норма в нем равна где скалярное произведение определено следующим образом:

Физический смысл весовой функции будет пояснен в п. 4. Выберем в качестве аппроксимирующей функции линейную комбинацию (37). Подставляя ее в условие наилучшего приближения (36), получим

Приравнивая нулю производные по коэффициентам, получим систему линейных уравнений

Ее определитель есть определитель Грама функций поскольку функции линейно-независимы, он отличен от нуля. Следовательно, наилучшее среднеквадратичное приближение существует и единственно. Для его вычисления необходимо решить систему линейных уравнений (38).

Линейно-независимую систему функций можно ортогонализировать.

Пусть уже образуют ортонормированную систему, т. е. ; тогда формулы (38) резко упрощаются и становятся удобными для вычислений

Это коэффициенты Фурье, так что наилучшее приближение есть отрезок обобщенного ряда Фурье.

Если функции образуют полную ортонормированную систему, то в силу равенства Парсеваля

Значит, при норма погрешности неограниченно убывает, т. е. наилучшее приближение среднеквадратично сходится к у и возможна аппроксимация с любой точностью.

Отметим, что если не ортогональны, то при определитель Грама обычно быстро стремится к нулю, система (38) становится плохо обусловленной, т. е. ее решение связано с большой потерей точности (см. главу V), и больше 5 - 6 членов суммы (37) брать нецелесообразно. Численная ортогонализация базиса при этом тоже приводит к большой потере точности. Поэтому если нужно большое число членов, то надо или проводить ортогонализацию точно (аналитически), или пользоваться готовыми системами ортогональных функций.

При интерполяции мы обычно полагали Для среднеквадратичной аппроксимации удобнее в качестве брать многочлены, ортогональные с заданным весом. Наиболее употребительны из них многочлены Якоби (частным случаем которых являются многочлены Лежандра и Чебышева), Лагерра и Эрмита. Для аппроксимации периодических функций используют тригонометрический ряд; он соответствует Сводка формул для ортогональных полиномов приведена в Приложении.

Все перечисленные выше системы функций полные, так что наилучшие приближения по ним среднеквадратично сходятся при если интегрируема с квадратом с заданным весом. При более сильных ограничениях имеет место сходимость во всех точках и даже равномерная сходимость. Приведем без доказательства некоторые результаты.

а) Ряд по многочленам Якоби сходится к непрерывной функции у равномерно на если существует непрерывная при некотором и если . В частности, для многочленов Чебышева первого рода достаточно а для многочленов Чебышева второго рода Для многочленов Лежандра доказан более сильный результат: ряд сходится равномерно, если существует ограниченная у

б) Если функция кусочно-непрерывная и кусочно-гладкая на и существует

то ряд по многочленам Лагерра сходится к функции в точках ее непрерывности и к полусумме односторонних пределов в точках разрыва. Эта сходимость, вообще говоря, не равномерная.

в) Если функция у кусочно-непрерывная и кусочно-гладкая на и существует

то ряд по многочленам Эрмита сходится так же, как в предыдущем абзаце.

г) Если у периодическая и непрерывная, причем ее модуль непрерывности удовлетворяет условию то ее тригонометрический ряд Фурье равномерно сходится к ней на всем периоде (признак Липшица); в частности, это условие выполняется для функции с ограниченной производной. Если функция имеет ограниченную производную а все младшие производные непрерывны, то для погрешности тригонометрического ряда Фурье и величин отдельных коэффициентов справедливы оценки

где А - константа. Видно, что при больших ряд сходится быстро. Но если кусочно-непрерывна, то сколько бы ни было у нее кусочно-непрерывных и ограниченных производных, ее коэффициенты Фурье убывают не быстрей и ряд сходится медленно (или даже расходится).

Замечание 1. Сходимость не во всех рассмотренных случаях была равномерной. Более того, не существует такого веса чтобы любая непрерывная функция разлагалась в равномерно сходящийся ряд по полиномам, ортогональным с этим весом. Буа-Реймондом и Л. Фейером были построены примеры периодических непрерывных функций, у которых тригонометрический ряд Фурье в отдельных точках расходится.

Замечание 2. Сходимость среднеквадратичного приближения тем лучше, чем меньше у функции особенностей - разрывов ее самой или ее производных. Если можно выделить основные особенности в виде несложной функции и аппроксимировать разность у точность аппроксимации существенно улучшается.

Пусть зависимоcть y от x задана в дискретной форме: { x 1 , y 1 ; x 2 , y 2 ; … x n , y n }. По этим данным можно построить такую аппроксимирующую функцию, график которой будет располагаться между узлами интерполяции близко к ним, но не обязательно точно проходить через все узлы. Такая зависимость носит сглаживающий характер и строится, например, для того, чтобы описать экспериментальные данные с помощью функции заданного вида. Необходимо определить лишь параметры этой функции. Для решения такой задачи используется метод наименьших квадратов - МНК . Его суть заключается в минимизации полной квадратичной невязки между построенной функцией и значениями y i в узловых точках:

где F (x ) – искомая аппроксимирующая функция.

Часто в качестве приближения, строящегося по МНК, берутся полиномы степени l ,
, гдеl < n -1 . В простейшем случае строится полином первой степени, т.е. линейная функция: F (x ) = ax + b . Коэффициенты a и b находятся с помощью метода наименьших квадратов по следующим формулам:

,
.

Для нахождения коэффициентов, можно использовать стандартные функции системы MathCAD и Excel.

В MathCAD имеется функция line(vx, vy) , которая возвращает линейные коэффициенты по значениям векторных аргументов vx и v y .

В Excel имеется функция ЛИНЕЙН, у которой также имеются два аргумента, состоящих из диапазонов ячеек. На первом месте диапазон ячеек соответствующий ординате. После ввода этой функции (например, «=ЛИНЕЙН(F10:F12;E1:E3)») выводится только один линейный коэффициент. Для вывода обоих коэффициентов необходимо выделить две ячейки (включая первую слева) потом нажать «F2», а затем комбинацию клавиш «crtl», «shift», «enter».

Лабораторная работа №8

Используя исходные данные из предыдущей работы, построить линейную функцию по методу наименьших квадратов. Вычислить полную квадратичную невязку полученной функции. Вычислить значение функции при заданном значении аргумента.

Физическая задача №3

Полагаем, что измерение интенсивности радиоактивного распада было выполнено для (К+1) моментов времени с заданным интервалом времени
. Эти измерения дали таблицу, состоящую из К+1 (К=3-5) значений количества распадов
для моментов времени
.

Используя метод наименьших квадратов, определить константу распада, период полураспада и значение суммы квадратов невязок.

Знание закона радиоактивного распада

подсказывает вычислить значения
и использовать метод наименьших квадратов для величин
, отыскивая параметры линейной зависимости. Тангенс угла наклона линейной зависимости определяет константу радиоактивного распада.

В отчете должен быть представлен график прямой
вместе с экспериментальными точками. Заметим, что закон радиоактивного распада является вероятностным и выполняется сравнительно точно для больших значений. Периоды полураспада радиоактивных изотопов изменяются в очень широких пределах. Например, период полураспада изотопа азота равен 10 минутам, а период полураспада изотопа хлора 300 000 лет . В заданиях период полураспада равен часам (и ответ следует выдавать в часах).

Из определения периода полураспада
следует его связь с постоянной распада:

. (2)

Параметры задачи преподаватель выдает студенту по аналитическим формулам

, .

В этих формулах - номер студента в группе, а- номер измерения (, время в этой формуле измеряется в часах. Между номером студента и периодом полураспада имеется линейная зависимость.

В отчете показать вывод уравнений, позволяющих решить задачу, график с прямой в логарифмическом масштабе для
и экспериментальными точками, выписать значения постоянной распада и времени полураспада в часах.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВПО «ВГТУ», ВГТУ)

Факультет радиотехники и электроники

Кафедра высшей математики и физико-математического моделирования


КУРСОВАЯ РАБОТА

по дисциплине: Математика

Тема: «Методы аппроксимации функций»


Разработал студент группы КП-121

И.С. Кононученко

Руководитель Кострюков С.А


ЗАДАНИЕ на курсовую работу


Тема: «Методы аппроксимации функций».

Студент группы КП-121 Кононученко Илья Сергеевич

1. Методы аппроксимации функций.

1.1. Непрерывная аппроксимация.

2. Точечная аппроксимация.

3. Интерполяционный полином Лагранжа.

4. Интерполяционный полином Ньютона.

5. Погрешность глобальной интерполяции.

6. Метод наименьших квадратов.

7. Подбор эмпирических формул.

8. Кусочно-постоянная интерполяция

9. Кусочно-линейная интерполяция.

2. Практическая часть.

2.1. Построить интерполяционный многочлен для функции f(x)=lnx- по узлам х=2; 4; 6; 8; 10; 12. Вычислить приближенное значение логарифма от 5,75. Получить оценку погрешности остаточного члена.

2.2. Функцию f(x), заданную таблицей, аппроксимировать линейной зависимостью ??(х)=Ах2+Вх+С. Найти х, для которого f(x)=10.



1. Методы аппроксимации функций

1.1 Непрерывная аппроксимация

1.2 Точечная аппроксимация

4 Интерполяционный полином Ньютона

8 Кусочно-постоянная интерполяция

9 Кусочно-линейная интерполяция

Практическая часть

2.1 Построить интерполяционный многочлен для функции f(x)=lnx-по узлам х=2; 4; 6; 8; 10; 12. Вычислить приближенное значение логарифма от 5,75. Получить оценку погрешности остаточного члена

2.2 Функцию f(x), заданную таблицей, аппроксимировать линейной зависимостью ?(х)=Ах+В, квадратичной зависимостью ?(х)=Ах2+Вх+С. Найти х, для которого f(x)=10

Список литературы


1.МЕТОДЫ АППРОКСИМАЦИИ ФУНКЦИЙ


1.1Непрерывная аппроксимация


Если исходная функция f(x) задана аналитическим выражением, то при построении аппроксимирующей функции возможно требовать минимальности отклонения одной функции от другой на некотором непрерывном множестве точек, например, на отрезке. Такой вид аппроксимации называется непрерывным или интегральным.

Теоретически для наилучшего приближения целесообразно требовать, чтобы во всех точках некоторого отрезка отклонения аппроксимирующей функции от функции f(x) было по абсолютной величине меньше заданной величины:

В этом случае говорят, что функция равномерно приближает функцию f(x) с точностью e на интервале. Практическое получение равномерного приближения представляет большие трудности, и поэтому этот способ применяется главным образом в теоретических исследованиях.

Наиболее употребительным является так называемое среднеквадратичное приближение, для которого наименьшее значение имеет величина

Потребовав обращения в нуль частных производных от М по параметрам, определяющим функцию, получают уравнения, позволяющие найти наилучшие значения этих параметров.


2 Точечная аппроксимация


Аппроксимация, при которой приближение строится на заданном дискретном множестве точек, называется точечной.

Для получения точечного среднеквадратичного приближения функции y=f(x), заданной таблично, аппроксимирующую функцию строят из условия минимума величины

где yi - значения функции f(x) в точках xi.

Основная сфера применения среднеквадратичного приближения - обработка экспериментальных данных (построение эмпирических формул).

Другим видом точечной аппроксимации является интерполирование, при котором аппроксимирующая функция принимает в заданных точках xi, те же значения yi , что и функция f(x), т.е. .


Рисунок 1

В этом случае, близость интерполирующей функции к заданной функции состоит в том, что их значения совпадают на заданной системе точек.

На рис. 1 показаны качественные графики интерполяционной функции (сплошная линия) и результаты среднеквадратичного приближения (пунктирная линия). Точками отмечены табличные значения функции f(x).


3 Интерполяционный полином Лагранжа


Лагранж предложил строить интерполяционный полином в виде разложения



где li(x) - базисные функции.

Для того, чтобы полином удовлетворял условиям Лагранжа, т.е. был бы интерполяционным, базисные функции li(x) должны обладать следующими свойствами:

) быть полином степени n

) удовлетворять условию

Лагранж показал, что функции, обладающие указанными свойствами, должны иметь следующий вид


С учетом этого выражения интерполяционный полином Лагранжа может быть записан в виде

В отличие от интерполяционного полинома в канонической форме для вычисления значений полинома Лагранжа не требуется предварительно определять коэффициенты полинома путем решения системы уравнений. Однако для каждого значения аргумента x полином Лагранжа приходится пересчитывать вновь, коэффициенты же канонического полинома вычисляются только один раз. Поэтому практическое применение полинома Лагранжа оправдано только в том случае, когда интерполяционная функция вычисляется в сравнительно небольшом количестве точек x.

Интерполяционный полином Лагранжа оказывается очень удобным для приближенного вычисления определенных интегралов. Если, например, некоторую функцию заменить интерполяционным полином Лагранжа, то определенный интеграл от нее может быть вычислен следующим образом



Значения интегралов от не зависят от f(x) и могут быть легко вычислены аналитически.


1.4 Интерполяционный полином Ньютона


Рассмотрим еще одну форму записи интерполяционного полинома


Требования совпадения значений полинома с заданными значения функции в узловых точках Ni(xi)=yi, i=0,1,…,n приводит к системе линейных уравнений с треугольной матрицей для неизвестных коэффициентов:



решить которую не составляет труда.

Интерполяционный полином называется полиномом Ньютона. Интересная особенность полинома Ньютона состоит в том, что каждая частичная сумма его первых (m+1) слагаемых представляет собой интерполяционный полином степени m, построенный по первым (m+1) табличным данным.


5 Погрешность глобальной интерполяции


Ошибка приближения функции f(x) интерполяционным полиномом n-й степени Ln(x) в точке x определяется разностью



Можно показать, что погрешность Rn(x) определяется следующим выражением


Здесь - производная (n+1) порядка функции f(x) в некоторой точке, а функция определена как

Если максимальное значение производной f (n+1)(x) равно



то для погрешности интерполяции следует оценка



Конкретная величина погрешности в точке x зависит, очевидно, от значения функции в этой точке. Качественный характер зависимости показан на рис. 2.


Рисунок 2

Вследствие описанного поведения погрешности, глобальная интерполяция в некоторых случаях может давать совершенно неудовлетворительный результат. Из рисунка видно, что погрешность интерполяции тем выше, чем ближе точка x лежит к концам отрезка. За пределами отрезка интерполяции (т.е. при экстраполяции) быстро растет, поэтому погрешность возрастает существенно.


1.6 Метод наименьших квадратов


Пусть для исходных данных xi, fi, i=1,…,N (нумерацию лучше начинать с единицы), выбран вид эмпирической зависимости: y=?(a0,a1,…,am) с неизвестными коэффициентами a0,a1,…,am . Запишем сумму квадратов отклонений между вычисленными по эмпирической формуле и заданными опытными данными:


S(a0,a1,…,am)=(?(x1,a0,a1,…,am)-fi)2


Параметры a0,a1,…,am будем находить из условия минимума функции S(a0,a1,…,am). В этом состоит метод наименьших квадратов (МНК).

Известно, что в точке минимума все частные производные от S по равны нулю:

Рассмотрим применение МНК для частного случая, широко используемого на практике. В качестве эмпирической функции рассмотрим полином

?(x)=a0+a1x+a2x2+…+amxm


Формула (1) для определения суммы квадратов отклонений примет вид:

S(a0,a1,…,am)=(a0+a1x+a2x2+…+amxm-fi)2 (2)


Вычислим производные

Приравнивая эти выражения к нулю и собирая коэффициенты при неизвестных a0,a1,…,am , получим следующую систему линейных уравнений

Данная система уравнений называется нормальной. Решая эту систему линейных уравнений, получаем коэффициенты.

В случае полинома первого порядка m=1, т.е. , система нормальных уравнений примет вид


При m=2 имеем:

Как правило, выбирают несколько эмпирических зависимостей. По МНК находят коэффициенты этих зависимостей и среди них находят наилучшую по минимальной сумме отклонений.


1.7 Подбор эмпирических формул


При интерполировании функций мы использовали условие равенства значений интерполяционного полинома и данной функции в узлах интерполяции. Если же исходные данные получены в результате опытных измерений, то требование точного совпадения не нужно, так как данные не получены точно. В этих случаях можно требовать лишь приближенного выполнения условий интерполяции. Это условие означает, что интерполирующая функция F(x) проходит не точно через заданные точки, а в некоторой их окрестности, так, например, как это показано на рис.

аппроксимация полином интерполяция формула

Рисунок 3


Тогда говорят о подборе эмпирических формул. Построение эмпирической формулы состоит из двух этапов подбора вида этой формулы, содержащей неизвестные параметры a0,a1,…,am, и определение наилучших в некотором смысле этих параметров. Вид формулы иногда известен из физических соображений (для упругой среды связь между напряжением и деформацией) или выбираются из геометрических соображений: экспериментальные точки наносятся на график и примерно угадывается общий вид зависимости путем сравнения полученной кривой с графиками известных функций. Успех здесь в значительной степени определяется опытом и интуицией исследователя.

Для практики важен случай аппроксимации функции многочленами, т.е. F(x)=a0+a1x+a2x2+…+amxm .

После того, как выбран вид эмпирической зависимости степень близости к эмпирическим данным определяется, используя минимум суммы квадратов отклонений вычисленных и экспериментальных данных.


1.8 Кусочно-постоянная интерполяция


На каждом отрезке интерполяционный многочлен равен константе, а именно левому или правому значению функции.

Для левой кусочно-линейной интерполяции

F(x)= fi-1, если xi-1 ?x

Для правой кусочно-линейной интерполяции F(x)= fi-1, если xi-1

Легко понять, что условия интерполяция выполняются. Построенная функция является разрывной, что ограничивает ее применение. Для левой кусочно-линейной интерполяции имеем графическое представление


Рисунок 4


1.9 Кусочно-линейная интерполяция


На каждом интервале функция является линейной Fi(x)=kix+li. Значения коэффициентов находятся из выполнения условий интерполяции в концах отрезка: Fi(xi-1)=fi-1, Fi(xi-1)=fi . Получаем систему уравнений: kixi-1+ li= fi-1, kixi+ li= fi , откуда находим ki=li= fi- kixi .

Следовательно, функцию F(x) можно записать в виде:


F(x)= x+ fi- kixi , если, т.е.

Или F(x)=ki ·(x-xi-1)+fi-1, ki = (fi - fi-1) / (xi - xi-1), xi-1 ? x ? xi, i=1,2,...,N-1


При использовании линейной интерполяции сначала нужно определить интервал, в который попадает значение x, а затем подставить его в формулу.

Итоговая функция будет непрерывной, но производная будет разрывной в каждом узле интерполяции. Погрешность такой интерполяции будет меньше, чем в случае кусочно-постоянной интерполяции. Иллюстрация кусочно-линейной интерполяции приведена на рисунке


Рисунок 5


2. ПРАКТИЧЕСКАЯ ЧАСТЬ


2.1 Построим интерполяционный многочлен для функции


f(x)=lnx- по узлам х=2; 4; 6; 8; 10; 12.


Формула для вычисления данного многочлена выглядит следующим образом:



где n- количество узлов.

Рассчитаем значения базисных полиномов.

Формула для расчета базисных полиномов:



Запишем значения узлов функции:

Вычислим значения функций f(x) в соответствующих узлах:

f(x0)==0.6931471805599453-1.5=-0.8068528194400547(x1)= =1.386294361119891-1.25=0.136294361119891(x2)= =1.791759469228055-1.1666666666666667=0.625092802561388(x3)= =2,079441541679835-1.125=0.954441541679835(x4)= =2.302585092994045-1.1=1.202585092994045(x5)= =2.484906649788-1.083333333333333=1.401573316454667


Рассчитаем значения соответствующих базисных полиномов:



Запишем формулу вычисления многочлена f(x)=lnx- по полученным данным:

L(x)=f(x0)·l0(x)+ f(x1)·l1(x)+ f(x2)·l2(x)+ f(x3)·l3(x)+ f(x4)·l4(x)+ f(x5)·l5(x).

Подставим в формулу полученные значения:

L(x)=((- 0.8068528194400547) ·(x-4)(x-6)(x-8)(x-10)(x-12)+ +0.136294361119891·5(x-2)(x-6)(x-8)(x-10)(x-12)- 0.625092802561388·10·

· (x-2)(x-4)(x-8)(x-10)(x-12)+ 0.954441541679835·10(x-2)(x-4)(x-6)(x-10)(x-12)-1.202585092994045·5(x-2)(x-4)(x-6)(x-8)(x-12)+ 1.401573316454667·

·(x-2)(x-4)(x-6)(x-8)(x-10)=0,000443792912875·x5-0.001895922201567·x4+

032520620421826·x3-0.289410042490318·x2+1.50294940468648·x-2.886362165898854

Рисунок 6

L(x)= 0.000443792912875·x5-0.001895922201567·x4+

032520620421826·x3-0.289410042490318·x2+

50294940468648·x-2.886362165898854

Из рисунка видно, что графики функций совпадают.

Вычислим приближенное значение логарифма от 5,75 с точностью до 0,001.

Воспользуемся разложением



Пользуясь формулой



посчитаем приближенное значение логарифма:

Получим оценку погрешности остаточного члена:

Формула нахождения остаточного члена в других точках:

Rn(x)=f(x)-Ln(x).

Подставим значения и вычислим остаточный член:

Rn(x)= -0.234721044665224-(-0.149875603361276)= 0.0122

Для абсолютной погрешности интерполяционной формулы Лагранжа можно получить следующую оценку:


0122374?9.9512361


Из оценки следует, что выбирая достаточно большое число точек разбиения можно получить результат с необходимой точностью.

Функцию f(x), заданную таблицей аппроксимируем линейной зависимостью ?(х)=Ах+В, квадратичной зависимостью ?(х)=Ах2+Вх+С.


x10151720f(x)371117Решение:

Для решения этой задачи воспользуемся методом наименьших квадратов.

Система нормальных уравнений для линейной зависимости (x)=Ax+B:

Учитывая, что n=4: ;

Решаем систему линейных уравнений:

Следовательно, линейная зависимость будет иметь вид:

Рассмотрим квадратичную зависимость?(х)=Ах2+Вх+С. Система нормальных уравнений имеет вид:


Найдем не подсчитанные суммы:

Следовательно, квадратичная зависимость будет иметь вид:


Рисунок 7

Функция, заданная таблицей.

Линейная зависимость

Квадратичная зависимость


По графику найдем значение х, для которого f(x)=10.

Список литературы


1. Кириллова С.Ю. Вычислительная математика/Кириллова С.Ю. Изд-во Владим. гос. ун-та, 2009. -102с.

2. Справочное пособие по приближенным методам решения задач высшей математики/ Л.И. Бородич, А.И. Герасимович, Н.П. Кеда и др.; под ред. Л.И. Бородич.- М.: Высшая школа, 1986. -189с.

3. Тюканов, А.С. Основы численных методов: учеб. пособие для студентов. Изд-во РГПУ им. А.И. Герцена, 2007. -226с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.


Top