Необходимое и достаточное условие обратимости матрицы. Условие обратимости матрицы. Обратная матрица. Ранг матрицы

Обратная матрица · Матрица B называется обратной к матрице , если справедливо равенство: . Обозначение : − Только квадратная матрица может иметь обратную матрицу. − Не всякая квадратная матрица имеет обратную матрицу. Свойства: 1. ; 2. ; 3. , где матрицы −квадратные, одинаковой размерности. Вообще говоря, если для не квадратных матриц возможно произведение , которое будет являться квадратной матрицей, то возможно существование и обратной матрицы , хотя 3-свойство при этом нарушается. Для нахождения обратной матрицы можно использовать метод элементарных преобразований строк: 1. Составляют расширенную матрицу, приписывая справа от исходной матрицы единичную матрицу соответствующей размерности: . 2. Элементарными преобразованиями строк матрицу Г приводят к виду: . − искомая Ранг матрицы · Минором k-ого порядка матрицы называется определитель, составленный из элементов исходной матрицы, стоящих на пересечении любых k строк и k столбцов ( ). Замечание . Каждый элемент матрицы является ее минором 1-го порядка. Теорема. Если в матрице все миноры k-ого порядка равны нулю, то равны нулю все миноры большего порядка. Разложим минор (определитель) (k+1 )-ого порядка через элементы 1-ой строки: . Алгебраические дополнения по сути являются минорами k- ого порядка, которые по условию теоремы равны нулю. Следовательно, . · В матрице порядка минор порядка называется базисным, если он не равен нулю, а все миноры порядка и выше равны нулю, или не существуют вовсе, т.е. совпадает с меньшим из чисел или . Столбцы и строки матрицы, из которых стоит базисный минор, называются базисными. В матрице может быть несколько различных базисных миноров, имеющих одинаковый порядок. · Порядок базисного минора матрицы называется рангом матрицы и обозначается: , . Очевидно, что . Например . 1. , . 2. . Матрица В содержит единственный ненулевой элемент являющийся минором 1-го порядка. Все определители более высоких порядков будут содержать 0-ю строку и поэтому равны 0. Следовательно, . обратная матрица 4. Системы линейных уравнений. Основные понятия. Система линейных алгебраических уравнений (линейная система , также употребляются аббревиатуры СЛАУ , СЛУ ) - система уравнений, каждое уравнение в котором является линейным - алгебраическим уравнением первой степени. Общий вид системы линейных алгебраических уравнений: Здесь - количество уравнений, а - количество переменных, - неизвестные, которые надо определить, коэффициенты и свободные члены предполагаются известными. Система называется однородной , если все её свободные члены равны нулю (), иначе - неоднородной . Решение системы линейных алгебраических уравнений - совокупность чисел , таких что из соответствующая подстановка вместо в систему обращает все её уравнения в тождества. Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения. Решения считаются различными, если хотя бы одно из значений переменных не совпадает. Совместная система с единственным решением называется определённой, при наличии более одного решения - недоопределённой. Матричная форма Система линейных алгебраических уравнений может быть представлена в матричной форме как: или: . Здесь - это матрица системы, - столбец неизвестных, а - столбец свободных членов. Если к матрице приписать справа столбец свободных членов, то получившаяся матрица называется расширенной. Теорема Кронекера - Капелли Теорема Кронекера - Капелли устанавливает необходимое и достаточное условие совместности системы линейных алгебраических уравнений посредством свойств матричных представлений: система совместна тогда и только тогда, когда ранг её матрицы совпадает с рангом расширенной матрицы. Методы решения систем линейных уравнений. Матричный метод Пусть дана система линейных уравнений с неизвестными (над произвольным полем): Перепишем в матричной форме: Решение системы найдем по формуле Обратную матрицу найдем по формуле: , где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы . Если, то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом Гаусса. Метод Крамера Ме́тод Крамера (правило Крамера) - способ решения СЛАУ с числом уравнений равным числу неизвестных с ненулевым главным определителем матрицы. Для системы линейных уравнений с неизвестными Заменяем i-тый столбец матрицы столбцом свободных членов b Пример: Система линейных уравнений с вещественными коэффициентами: Определители: В определителях столбец коэффициентов при соответствующей неизвестной заменяется столбцом свободных членов системы. Решение: 5. Метод Гаусса Алгоритм решения: 1. Запишем расширенную матрицу 2. Приведем к ступенчатому виду путем элементарных преобразований 3. Обратный ход, в ходе которого выражаем базисные члены через свободные. Расширенная матрица получается путем добавления к матрице столбца свободных членов. Существуют следующие элементарные преобразования: 1. Строки матрицы можно переставлять местами. 2. Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. 3. Если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить. 4. Строку матрицы можно умножить (разделить)на любое число, отличное от нуля . 5. К строке матрицы можно прибавить другую строку, умноженную на число, отличное от нуля. Элементарные преобразования не меняют решение системы уравнений Обратный ход: Обычно в качестве базисных переменных берут те переменные, которые расположены на первых местах в ненулевых строках преобразованной матрицы системы, т.е. на "ступеньках". Далее выражаются базисные члены через свободные. Идем “снизу в вверх” попутно выражая базисные члены и подставляя результаты в вышестоящее уравнение. Пример: Базисные переменные всегда «сидят» строго на ступеньках матрицы. В данном примере базисными переменными являются и Свободные переменные – это все оставшиеся переменные, которым не досталось ступеньки. В нашем случае их две: – свободные переменные. Теперь нужно все базисные переменные выразить только через свободные переменные . Обратный ход алгоритма Гаусса традиционно работает снизу вв

Невырожденной матрицей называется квадратная матрица n-го порядка, определитель которой отличен от нуля. В противном случае матрица называется вырожденной .

Теорема (единственности существования обратной матрицы): Если у матрицы существует обратная матрица , то она единственна.

Доказательство.

Пусть существует матрица , для которой и матрица , для которой .

Тогда , то есть . Умножим обе части равенства на матрицу , получим , где и .

Значит, , что и требовалось доказать.

12. Матричные уравнения, их решение с помощью обратной матрицы.

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С - задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

13. Квадратные системы линейных уравнений. Правило Крамера.

Система m линейных уравнений с n неизвестными (или, линейная система) в линейной алгебре - это система уравнений вида

Метод Крамера (правило Крамера) - способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно). Назван по имени Габриэля Крамера (1704–1752), придумавшего метод.

Для системы n линейных уравнений с n неизвестными (над произвольным полем)

с определителем матрицы системы Δ, отличным от нуля, решение записывается в виде

(i-ый столбец матрицы системы заменяется столбцом свободных членов).

В другой форме правило Крамера формулируется так: для любых коэффициентов c 1 , c 2 , …, c n справедливо равенство:

Система линейных уравнений:


Сложение матриц.

Свойства сложения:

· А + В = В + А.

· (А + В) + С = А + (В + С) .

Умножение матрицы на число.

· k(A + B) = kA + kB.

· (k + m)A = kA + mA.


Перемножение матриц.

Обратная матрица.




Свойства определителей




4. Теорема замещения.

5. Теорема аннулирования.

дополнений этих элементов

где i= ,

Транспонирование матриц.

Транспонированная матрица
A T [i , j ] = A [j , i ].
Например,

и

Цилиндрические поверхности.

Поверхность, образованная движением прямой L, которая перемещается в пространстве, сохраняя постоянное направление и пересекая каждый раз некоторую кривую K, называется цилиндрической поверхностью или цилиндром при этом кривая К – направляющая цилиндра, а L – его образующая.

Эллиптический цилиндр

Эллиптическое уравнение:

Частным случаем эллиптического цилиндра является круговой цилиндр , его уравнение x 2 + y 2 = R 2 . Уравнение x 2 =2pz определяет в пространстве параболический цилиндр .

Уравнение: определяет в пространстве гиперболический цилиндр .

Все эти поверхности называются цилиндрами второго порядка , так как их уравнения есть уравнения второй степени относительно текущих координат x, y, z.

62. Эллипсоиды.

Исследуем поверхность, заданную уравнением:

Рассмотрим сечения поверхности с плоскостями, параллельными плоскости xOy. Уравнения таких плоскостей: z=h,где h – любое число. Линия, получаемая в сечении, определяется двумя ур-ниями:

Исследуем поверхность:

А) если то Линия пересечения поверхности с плоскостямиz=h не существует.

Б) если , линия пересечения вырождается в две точки (0,0,с), и (0,0,-с). Плоскости z = c, z = - c касается данной поверхности.

В) если , то уравнения можно переписать в виде:
, как видно, линия пересечения есть эллипс с полуосями а1 = , b1 = . При этом, чем меньше h, тем больше полуоси. При н=0 они достигают своих наибольших значений.а1=а, b1=b. Уравнения примут вид:

Рассмотренные сечения позволяют изобразить поверхность как замкнутую овальную поверхность. Поверхность называется эллипсоидами., если какие-либо полуоси равны, трехосный эллипсоид превращается в эллипсоид вращения, а если а=b=c, то в сферу.

Гиперболоиды.

1. Исследуем поверхность . Пересекая поверхностьплоскостью z=h, получим линию пересечения, уравнения которой имеет вид


z=h. или z=hполуоси: а1= b1=

полуоси достигают своего наименьшего значения при h=0: а1=а, b1=b. При возрастании h полуоси эллипса будут увеличиваться. => х=0.

Анализ этих сечений показывает, что поверхность, определяемая уравнением, имеет форму бесконечной расширяющейся трубки. Поверхность называется однополостным гиперболоидом.

2. - уравнение поверхности.

и - поверхность, состоящая из 2 полостей, имеющих форму выпуклых неограниченных чаш. Поверхность называется двухполостным гиперболоидом .

64. параболоиды.

.
-это эллиптический параболоид.

Каноническое уравнение: (р>0, q>0).

p = q - параболоид вращения вокруг оси Oz.

Сечения эллиптического параболоида плоскостями - либо эллипс, либо парабола, либо точка.

2.
- гиперболический параболоид.

Сечения гиперболического параболоида плоскостями - либо гипербола, либо парабола, либо пара прямых (прямолинейных образующих).

65. Канонические поверхности.

Каноническое уравнение:

a = b - конус вращения (прямой круговой)
Сечения конуса плоскостями: в плоскости, пересекающей все прямолинейные образующие, - эллипс; в плоскости, параллельной одной прямолинейной образующей, - парабола; в плоскости, параллельной двум прямолинейным образующим, - гипербола; в плоскости, проходящей через вершину конуса, - пара пересекающихся прямых или точка (вершина).

66. Функция. Основные понятия. Способы её задания.

Функцией называется закон, по которому числу х из заданного множества Х, поставлено в соответствие только одно число у, пишут , при этом x называют аргументом функции, y

называют значением функции.

1. Аналитический способ.

2. Графический способ.

3. Словесный способ.

4. Табличный способ.

Теорема сравнения.

в теории дифференциальных уравнений- теорема, утверждающая наличие определенного свойства решений дифференциального уравнения (или системы дифференциальных уравнений) в предположении, что некоторым свойством обладает вспомогательное уравнение или неравенство (система дифференциальных уравнении пли неравенств).

1) Теорема Ш т у р м а: любое нетривиальное решение уравнения обращается в нуль на отрезке не более т раз если этим свойством обладает уравнение и при.

2) Дифференциальное неравенство: решение задачи покомпонентно неотрицательно при если этим свойством обладает решение задачи и выполнены неравенства

Первый замечательны предел.

При вычислении пределов выражений, содержащих тригонометрические функции, часто используют предел называемый первым замечательным пределом.

Читается: предел отноешния синуса к его аргументу равен единице, когда аргумент стремится к нулю.

Доказательство:

Возьмем круг радиуса 1, обозначим радианную меру угла МОВ через х. пусть 0 , дуга МВ численно равна центральному углу х, . Очевидно, имеем . На основании соответствующих формул геометрии получаем . Разделим неравенство на >0, Получим 1<

Так как , то по признаку (о пределе промежуточной функции) существования пределов .

А если x<0 => , где –x>0 =>

83. Второй замечательный предел.

Как известно, предел числовой последовательности
, имеет предел равный e. . 1.Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где n=[x] – это целая часть x. Отсюда следует , поэтому
. Если , то . Поэтому:
,

По признаку существования пределов: . 2. Пусть . Сделаем подстановку –x=t, тогда = . и называются вторым замечательным пределом. Они широко используются при вычислении пределов. В приложениях анализа большую роль играет показательная функция с основанием e. Функция называется экспоненциональной, употребляется также обозначение .

Доказательство.

(с учетом того, что если Dx®0, то Du®0, т.к. u = g(x) – непрерывная функция)

Тогда . Теорема доказана.

Теорема Коши

Теорема Коши: Если функции f(x) и непрерывны на отрезке , дифференцируемы на интервале (a,b), причем для , то найдется хотя бы одна точка , такая, что выполняется равенство
.

Матрицы. Основные понятия. Линейные операции над матрицами и их свойства.

Матрицей размера m на n называется совокупность mn вещественных (комплексных) чисел или элементов другой структуры (многочлены, функции и т.д.), записанных в виде прямоугольной таблицы, которая состоит из m строк и n столбцов и взятая в круглые или прямоугольные или в двойные прямые скобки. При этом сами числа называются элементами матрицы и каждому элементу ставится в соответствие два числа - номер строки и номер столбца.

Матрица, все элементы которой равны нулю, называется нулевой матрицей

Матрица размера n на n называется квадратной матрицей n-го порядка, т.е. число строк равно числу столбцов.

Квадратная матрица называется диагональной, если все ее внедиагональные элементы равны нулю.

Диагональная матрица, у которой все диагональные элементы равны 1, называется единичной матрицей
Сложение матриц.

Свойства сложения:

· А + В = В + А.

· (А + В) + С = А + (В + С) .

· Если О – нулевая матрица, то А + О = О + А = А

Замечание 1. Справедливость этих свойств следует из определения операции сложения матриц.

Замечание 2. Отметим еще раз, что складывать можно только матрицы одинаковой размерности.

Умножение матрицы на число.

Свойства умножения матрицы на число

· k(A + B) = kA + kB.

· (k + m)A = kA + mA.

Замечание 1. Справедливость свойств следует из определений 3.4 и 3.5.

Замечание 2. Назовем разностью матриц А и В матрицу С, для которой С+В=А, т.е.С=А+(-1)В.
Перемножение матриц.

Умножение матрицы на матрицу тоже требует выполнения определенных условий для размерностей сомножителей, а именно: число столбцов первого множителя должно равняться числу строк второго.

Для квадратных матриц одного порядка произведения АВ и ВА существуют и имеют одинаковую размерность, но их соответствующие элементы в общем случае не равны.

Однако в некоторых случаях произведения АВ и ВА совпадают

Обратная матрица.

Квадратная матрица А называется вырожденной, если ∆А=0, и невырожденной, если∆А≠0

Квадратная матрица В называется обратной к квадратной матрице А того же порядка, если АВ = ВА = Е. При этом В обозначается

Для существования обратной матрицы необходимо и достаточно, чтобы исходная матрица была невырожденной.


2. Определитель матрицы. Свойства определителей.

Определи́тель (или детермина́нт) - одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной матрицы (то есть такой, у которой количество строк и столбцов равно). В общем случае матрица может быть определена над любым коммутативным кольцом, в этом случае определитель будет элементом того же кольца. (∆А)

Свойства определителей

· Определитель - кососимметричная полилинейная функция строк (столбцов) матрицы. Полилинейность означает, что определитель линеен по всем строкам (столбцам): , где и т. д. - строчки матрицы, - определитель такой матрицы.

· При добавлении к любой строке (столбцу) линейной комбинации других строк (столбцов) определитель не изменится.

· Если две строки (столбца) матрицы совпадают, то её определитель равен нулю.

· Если две (или несколько) строки (столбца) матрицы линейно зависимы, то её определитель равен нулю.

· Если переставить две строки (столбца) матрицы, то её определитель умножается на (-1).

· Общий множитель элементов какого-либо ряда определителя можно вынести за знак определителя.

· Если хотя бы одна строка (столбец) матрицы нулевая, то определитель равен нулю.

· Сумма произведений всех элементов любой строки на их алгебраические дополнения равна определителю.

· Сумма произведений всех элементов любого ряда на алгебраические дополнения соответствующих элементов параллельного ряда равна нулю.

· Определитель произведения квадратных матриц одинакового порядка равен произведению их определителей (cм. также формулу Бине-Коши).

· С использованием индексной нотации определитель матрицы 3×3 может быть определён с помощью символа Леви-Чивита из соотношения:

3. Миноры и алгебраические дополнения.

Минором элемента матрицы n-го порядка называется определитель матрицы (n-1)-го порядка, полученный из матрицы А вычеркиванием i-й строки и j-го столбца.

При выписывании определителя (n-1)-го порядка, в исходном определителе элементы находящиеся под линиями в расчет не принимаются.
Алгебраическим дополнением Аij элемента аij матрицы n-го порядка называется его минор, взятый со знаком, зависящий от номера строки и номера столбца:то есть алгебраическое дополнение совпадает с минором, когда сумма номеров строки и столбца – четное число, и отличается от минора знаком, когда сумма номеров строки и столба – нечетное число.

4. Теорема замещения.

Суммы произведений произвольных чисел bi ,b2,...,b на алгебраические дополнения элементов любого столбца или строки матрицы порядка n равны определителю матрицы, которая получается из данной заменой элементов этого столбца (строки)числами b1,b2,...,bn.

5. Теорема аннулирования.

Сумма, произведений элементов одного из столбцов (строк) матрицы на соответствующие алгебраические дополнения элементов другого столбца (строки) равна нулю.

6. Некоторые методы вычисления определителей.

Теорема (Лапласа). Определитель матрицы порядка N = сумме произведения всех миноров k-гопорядка которые можно составить из произвольно выбранных k параллельных рядов и алгебраических дополнений этих миноров

Теорема (о разложении определителя по элементам ряда). Определитель кв. матрицы=сумме произведений элементов некоторого ряда и алгебраических

дополнений этих элементов

7. Умножение матриц. Свойства умножения.

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.

Произведением матрицы А m * n = (a i , g) на матрицу В n * p = (b i , k) называется матрица Сm*p = (с i , k) такая, что: ,

где i= , , т.е. элемент i-той и k-ого столбца матрицы произведения С равен сумме произведений элементов i-той строки матрицы А на соответствующие элементы к-ого столбца матрицы В.

Матрицы А, n*m и В, m*n, назыв. согласованными. (если А согласованно с В, то это не значит, что В согласованно с А).

Смысл согласованности в том, чтобы количество столбцов 1-ой матрицы совпадало с количеством строк 2-ой матрицы. Для согласованных матриц можно определить операцию умножения.

Если матрицы A и B квадратные и одного размера, то A*B и B*A всегда существуют. Транспонированием называется смена всех элементов столбца соотв элементами строки. Если A T =A, то матрица А наз. симметричная (она обязательно квадратная).

Транспонирование матриц.

Транспонированная матрица - матрица , полученная из исходной матрицы заменой строк на столбцы.
Формально, транспонированная матрица для матрицы размеров - матрица размеров , определённая как A T [i , j ] = A [j , i ].
Например,

и

Обратная матрица. Необходимое и достаточное условие существования обратной матрицы. Нахождение обратной матрицы.

Пусть есть матрица А – невырожденная.

А -1 , A -1 *A=A*A -1 =E, где E –единичная матрица. A -1 имеет те же размеры, что и A.

Алгоритм нахождения обратной матрицы:

1. вместо каждого элемента матрицы а ij записываем его алгебраическое дополнение.

А* - союзная матрица.

2. транспонируем полученную союзную матрицу. А *Т

3. делим каждый элемент союзной матрицы на определитель матрицы А.

A -1 = A *Т

Теорема: (об аннулировании определителя):
сумма произведений элементов некоторого ряда определителя на алгебраическое дополнение к элементам другого параллельного ряда всегда равна нулю.

10. Матричная запись системы линейных уравнений и её решения.

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

Найдем произведение

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче A X=B .

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением .

Пусть определитель матрицы отличен от нуля |A | ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A : . Поскольку A -1 A = E и E X = X , то получаем решение матричного уравнения в виде X = A -1 B .

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных . Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B .

11. Решение невырожденных линейных систем, формулы Крамера.

СЛАУ принято записывать в матричной форме, когда сами неизвестные не указываются, а указывается только матрица системы А и столбец свободных членов В.

Решение невырожденных СЛАУ методом Крамера:

А -1 =

X1= (A 11 b 1 + A 21 b 2 + …+A n 1 b n)

Теорема: (Крамера):
решение невырожденных уравнений АХ=В, можно записать так:

, Ак получается из А путем замены к-го столбца на столбец свободного члена В.

12. Ранг матрицы. Свойства ранга матрицы. Вычисление ранга матрицы с помощью элементарных преобразований.

Максимальное число линейно-зависимых строк матрицы A наз. рангом матрицы и обозначr(a). Наибольшее из порядков миноров данной матрицы отличных от 0 назрангом матрицы .

Свойства:

1)при транспонировании rang=const.

2)если вычеркнуть нулевой ряд, то rang=const;

3)rang=cost, при элементарных преобразованиях.

3)для вычисл ранга с помощью элементарпреобраз матрица AпреобразвматрицB, ранг которой легко находится.

4)ранг треуг матрицы=числу ненулевых элем, располож на глав.диагоналях.

Методы нахождения ранга матрицы:

1) метод окаймляющих миноров

2) метод элементарных преобразований

Метод окаймляющих миноров:

метод окаймляющих миноров позволяет алгоритмизировать процесс нахождения ранг-матрицы и позволяет свести к минимуму количество вычисления миноров.

1) если в матрице все нулевые элементы, то ранг = 0

2) если есть хоть один ненулевой элемент =>r(a)>0

теперь будем окаймлять минор М1, т.е. будем строить всевозможные миноры 2-ого порядка, ктр. содержат в себе i-тую строку и j-тый столбец, до тех пор, пока не найдем ненулевой минор 2-ого порядка.

Процесс будет продолжаться до одного из событий:
1. размер минора достигнет числа к.

2. на каком-то этапе все окаймленные миноры окажутся = 0.

В обоих случаях величина ранга-матрицы будет равна порядку большего отличного от нуля минора.

Метод элементарных преобразований:
как известно, понятие треугольной матрицы определяется только для квадратных матриц. Для прямоугольных матриц аналогом является понятие трапецивидной матрицы.

Например:
ранг = 2.

Пусть имеется квадратная матрица n-го порядка

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е — единичная матрица n-го порядка.

Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули, например:

Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...А n) называется невырожденной , если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

  1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.
  2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.
  3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.
  4. Записать обратную матрицу А -1 , которая находится в последней таблице под матрицей Е исходной таблицы.
Пример 1

Для матрицы А найти обратную матрицу А -1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А -1 .

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение : Так как обратная матрица равняется (см. пример 1)

Матричный метод в экономическом анализе

Наряду с другими в находят применение также матричные методы . Эти методы базируются на линейной и векторно-матричной алгебре. Такие методы применяются для целей анализа сложных и многомерных экономических явлений. Чаще всего эти методы используются при необходимости сравнительной оценки функционирования организаций и их структурных подразделений.

В процессе применения матричных методов анализа можно выделить несколько этапов.

На первом этапе осуществляется формирование системы экономических показателей и на ее основе составляется матрица исходных данных , которая представляет собой таблицу, в которой по ее отдельным строкам показываются номера систем (i = 1,2,....,n) , а по вертикальным графам — номера показателей (j = 1,2,....,m) .

На втором этапе по каждой вертикальной графе выявляется наибольшее из имеющихся значений показателей, которое и принимается за единицу.

После этого все суммы, отраженные в данной графе делят на наибольшее значение и формируется матрица стандартизированных коэффициентов .

На третьем этапе все составные части матрицы возводят в квадрат. Если они имеют различную значимость, то каждому показателю матрицы присваивается определенный весовой коэффициент k . Величина последнего определяется экспертным путем.

На последнем, четвертом этапе найденные величины рейтинговых оценок R j группируются в порядке их увеличения или уменьшения.

Изложенные матричные методы следует использовать, например, при сравнительном анализе различных инвестиционных проектов, а также при оценке других экономических показателей деятельности организаций.

Для каждого числа а¹0 существует обратное число а -1 такое, что произведение а×а -1 =1 . Для квадратных матриц вводится аналогичное понятие.

Определение. Если существуют квадратные матрицы Х и А одного порядка, удовлетворяющие условию:

где Е — единичная матрица того же самого порядка, что и матрица А, то матрица Х называется обратной к матрице А и обозначается А -1 .

Из определения следует, что только квадратная матрица имеет обратную; в этом случае и обратная матрица является квадратной того же порядка.

Однако, не каждая квадратная матрица имеет обратную. Если условие а¹0 является необходимым и достаточным для существования числа а -1 , то для существования матрицы А -1 таким условием является требование DA¹0.

Определение. Квадратная матрица n -го порядка называется невырожденной (неособенной) , если ее определитель DA¹0.

Если же DA=0 , то матрица А называется вырожденной (особенной).

Теорема (необходимое и достаточное условие существования обратной матрицы). Если квадратная матрица неособенная (т.е. ее определитель не равен нулю), то для нее существует единственная обратная матрица.

Доказательство.

I. Необходимость. Пусть матрица А имеет обратную А -1 , т.е. АА -1 = А -1 А=Е. По свойству 3 определителей (§ 11) имеем D(АА -1)= D(А -1) D(А)= D(Е)=1, т.е. DA¹0 и DA -1 ¹0.

I I. Достаточность. Пусть квадратная матрица А неособенная, т.е. DA¹0 . Напишем транспонированную матрицу А Т:

В этой матрице каждый элемент заменим его алгебраическим дополнением, получим матрицу:

Матрица А * называется присоединенной матрицей к матрице А.

Найдем произведение АА * (и А * А):

Где диагональные элементы = DA,

DA.(формуле 11.1 §11 )

А все остальные недиагональные элементы матрицы АА * равны нулю по свойству 10 §11, например:

и т.д. Следовательно,

АА * = или АА * = DA= DA×Е.

Аналогично доказывается, что А * А = DA×Е.

Разделив оба полученных равенства на DA, получим: . Отсюда, по определению обратной матрицы, следует существование обратной матрицы

Т.к. АА -1 =А -1 А=Е .

Существование обратной матрицы доказано. Докажем единственность. Предположим, что существует еще другая обратная матрица F для матрицы А, тогда AF = E и FA = E. Умножив обе части первого равенства на А -1 слева, а второго на А -1 справа, получим: А -1 AF = А -1 E и FA А -1 = E А -1 , откуда EF = А -1 E и FE = E А -1 . Следовательно, F = А -1 . Единственность доказана.

Пример. Дана матрица А = , найти А -1 .

Алгоритм вычисления обратной матрицы:

Свойства обратных матриц.

1) (A -1) -1 = A;

2) (AB) -1 = B -1 A -1

3) (A T) -1 = (A -1) T .

⇐ Предыдущая78910111213141516Следующая ⇒

⇐ ПредыдущаяСтр 3 из 4Следующая ⇒

Рассмотрим матрицы

Причем элементы матриц А и В заданы, а Х 1 , Х 2 , Х 3 – неизвестные.

Тогда уравнение А × Х = В называется простейшим матричным уравнением .

Чтобы его решить, т.е. найти элементы матрицы неизвестных Х, поступим следующим образом:

1. Умножим обе части уравнения на матрицу А -1 , обратную для матрицы А, слева :

А -1 (А × Х) = А -1 × В

2. Используя свойство умножения матриц, запишем

(А -1 × А) Х = А -1 × В

3. Из определения обратной матрицы

(А -1 × А = Е) имеем Е × Х = А -1 × В.

4. Используя свойство единичной матрицы (Е × Х = Х), окончательно получим Х = А -1 × В

Замечание . Если матричное уравнение имеет вид Х × С = Д, то для нахождения неизвестной матрицы Х уравнение необходимо умножать на С -1 справа .

Пример . Решить матричное уравнение

Решение . Введем обозначения

Их определения умножения матриц с учетом размерностей А и В матрица неизвестных Х будет иметь вид

С учетом введенных обозначений имеем

А × Х = В откуда Х = А -1 × В

Найдем А -1 по алгоритму построения обратной матрицы

Вычислим произведение

Тогда для Х получим

Х = откуда х 1 = 3, х 2 = 2

Ранг матрицы

Рассмотрим матрицу А размера (m x n)

Минором к-ого порядка матрицы А будем называть определитель порядка к, элементами которого являются элементы матрицы А, стоящие на пересечении любых К строк и любых К столбцов. Очевидно, к £ min (m, n).

Определение . Рангом r(A) матрицы А называется наибольший порядок минора этой матрицы, отличного от нуля.

Определение. Всякий отличный от нуля минор матрицы, порядок которого равен ее рангу, называется базисным минором .

Определени е. Матрицы, имеющие одинаковые ранги, называются эквивалентными .

Вычисление ранга матрицы

Определение . Матрица называется ступенчатой , если под первым ненулевым элементом каждой ее строки стоят нули в нижележащих строках.

Теорема . Ранг ступенчатой матрицы равен числу ее ненулевых строк.

Таким образом, преобразуя матрицу к ступенчатому виду, несложно определить ее ранг. Эта операция осуществляется с помощью элементарных преобразований матрицы , которые не изменяют ее ранга:

— умножение всех элементов ряда матрицы на число l ¹ 0;

— замена строк столбцами и наоборот;

— перестановка местами параллельных рядов;

— вычеркивание нулевого ряда;

— прибавление к элементам некоторого ряда соответствующих элементов параллельного ряда, умноженных на любое действительное число.

Пример .

Теорема (необходимое и достаточное условие существования обратной матрицы).

Вычислить ранг матрицы

А =

Решение . Преобразуем матрицу к ступенчатому виду. Для этого к третьей строке прибавим вторую, умноженную на (-3).

А ~

К четвертой строке прибавим третью.

Число ненулевых строк в полученной эквивалентной матрице равно трем, следовательно r(А) = 3.

Системы n линейных уравнений с n неизвестными.

Методы их решения

Рассмотрим систему n линейных уравнений с n неизвестными.

А 11 х 1 + а 12 х 2 + … + а 1 n x n = b 1

а 21 х 1 + а 22 х 2 + … + а 2 n x n = b 2 (1)

……………………………….

а n 1 х 1 + а n 2 х 2 + … + а nn x n = b n

Определение: Решением системы (1) называется совокупность чисел (х 1 , х 2 , …, х n), которая обращает каждое уравнение системы в верное равенство.

Матрица А, составленная из коэффициентов при неизвестных, называется основной матрицей системы (1).

A =

Матрица В, состоящая из элементов матрицы А и столбца свободных членов системы (1), называется расширенной матрицей.

В =

Матричный метод

Рассмотрим матрицы

Х = — матрица неизвестных;

С = — матрица свободных членов системы (1).

Тогда по правилу умножения матриц систему (1) можно представить в виде матричного уравнения

А × Х = С (2)

Решение уравнения (2) изложено выше, то есть Х = А -1 × С, где А -1 – обратная матрица для основной матрицы системы (1).

Метод Крамера

Система n линейных уравнений с n неизвестными, главный определитель которой отличен от нуля, всегда имеет решение и притом единственное, которое находится по формулам:

где D = det А – определитель основной матрицы А системы (1), который называется главным, Dх i получаются из определителя D заменой i-ого столбца столбцом из свободных членов, т.е.

Dх 1 = ;

Dх 2 = ; … ;

Пример .

Решить систему уравнений методом Крамера

2х 1 + 3х 2 + 4х 3 = 15

х 1 + х 2 + 5х 3 = 16

3х 1 — 2х 2 + х 3 = 1

Решение .

Вычислим определитель основной матрицы системы

D = det A = = 44 ¹ 0

Вычислим вспомогательные определители

Dх 3 = = 132.

По формулам Крамера найдем неизвестные

; ; .

Таким образом, х 1 = 0; х 2 = 1; х 3 = 3.

Метод Гаусса

Суть метода Гаусса заключается в последовательном исключении неизвестных из уравнений системы, т.е. в приведении основной матрицы системы к треугольному виду, когда под ее главной диагональю стоят нули. Это достигается с помощью элементарных преобразований матрицы над строчками. В результате таких преобразований не нарушается равносильность системы и она приобретает также треугольный вид, т.е. последнее уравнение содержит одну неизвестную, предпоследнее две и т.д. Выражая из последнего уравнения n-ую неизвестную и с помощью обратного хода, используя ряд последовательных подстановок, получают значения всех неизвестных.

Пример . Решить систему уравнений методом Гаусса

3х 1 + 2х 2 + х 3 = 17

2х 1 — х 2 + 2х 3 = 8

х 1 + 4х 2 — 3х 3 = 9

Решение . Выпишем расширенную матрицу системы и приведем, содержащуюся в ней матрицу А к треугольному виду.

Поменяем местами первую и третью строки матрицы, что равносильно перестановке первого и третьего уравнений системы. Это позволит нам избежать появления дробных выражений при последующих вычислениях

В ~

Первую строку полученной матрицы умножим последовательно на (-2) и (-3) и сложим соответственно со второй и третьей строками, при этом В будет иметь вид:

После умножения второй строки на и сложения ее с третьей строкой матрица А примет треугольный вид. Однако чтобы упростить вычисления можно поступить следующим образом: умножим третью строку на (-1) и сложим со второй. Тогда получим:

В ~

В ~

Восстановим из полученной матрицы В систему уравнений, равносильную данной

Х 1 + 4х 2 — 3х 3 = 9

х 2 — 2х 3 = 0

— 10х 3 = -10

Из последнего уравнения находим Найденное значение х 3 = 1 подставим во второе уравнение системы, из которого х 2 = 2х 3 = 2 × 1 = 2.

После подстановки х 3 = 1 и х 2 = 2 в первое уравнение для х 1 получим х 1 = 9 — 4х 2 + 3х 3 = 9 — 4 × 2 + 3 × 1 = 4.

Итак, х 1 = 4, х 2 = 2, х 3 = 1.

Замечание. Для проверки правильности решения системы уравнений необходимо подставить найденные значения неизвестных в каждое из уравнений данной системы. При этом, если все уравнения обратятся в тождества, то система решена верно.

Проверка:

3 × 4 + 2 × 2 + 1 = 17 верно

2 × 4 — 2 + 2 × 1 = 8 верно

4 + 4 × 2 — 3 × 1 = 9 верно

Итак, система решена верно.

⇐ Предыдущая1234Следующая ⇒

Читайте также:

Простейшие матричные уравнения

где – матрицы таких размеров, что все используемые операции возможны, а левые и правые части этих матричных уравнений представляют собой матрицы одинаковых размеров.

Решение уравнений (1)-(3) возможно с помощью обратных матриц в случае невырожденности матриц при Х. В общем случае матрицу Х записывают поэлементно и проводят указанные в уравнении действия над матрицами. В результате получают систему линейных уравнений. Решив систему, находят элементы матрицы Х.

Метод обратной матрицы

Это решение системы линейных уравнений в случае квадратной невырожденной матрицы системы А. Находится из матричного уравнения АХ=В.

А -1 (АХ)=А -1 В, (А -1 А)Х=А -1 В, ЕХ= А -1 В, Х= А -1 В.

Формулы Крамера

Теорема. Пусть Δ определитель матрицы системы А, а Δ j — определитель матрицы, получаемый из матрицы А заменой j-го столбцом свободных членов. Тогда, если Δ≠ 0, то система имеет единственное решение, определяемое по формулам:

— формулы Крамера.

ДЗ 1. 2.23, 2.27, 2.51,2.55, 2.62; ДЗ 2.2.19, 2.26, 2.40,2.65

Тема 4. Комплексные числа и многочлены

Комплексные числа и действия над ними

Определения.

1. Символ вида a + bi , где a и b произвольные действительные числа, условимся называть комплексным числом.

2. Комплексные числа a + bi и a 1 + b 1 i условимся считать равными, если а = а 1 и

b = b 1 .

3. Комплексное число вида a + 0i условимся считать равным действительному числу а.

4. Суммой двух комплексных чисел a + bi и a 1 + b 1 i называется комплексное число (а + а 1) + (b + b 1)i.

Обратная матрица. Ранг матрицы.

Произведением двух комплексных чисел называется комплексное число aa 1 – bb 1 + (a b 1 +a 1 b)i.

Комплексное число вида 0 + bi называется чисто мнимым числом и обычно записывается так: bi ; число 0 +1i = i называется мнимой единицей .

В силу определения 3 всякому действительному числу а соответствует «равное» комплексное число a + 0i и обратно – всякому комплексному числу a + 0i соответствует «равное» действительное число а , то есть между этими числами существует взаимно-однозначное соответствие. Если рассмотреть сумму и произведение комплексных чисел a 1 + 0i и a 2 + 0i по правилам 4 и 5, то получим:

(a 1 + 0i) + (a 2 + 0i) = (a 1 + a 2) + 0i,

(a 1 + 0i) (a 2 + 0i) = (a 1 a 2 – 0) + (a 1 0+a 2 0) i = a 1 a 2 + 0i.

Мы видим, что сумме (или произведению) данных комплексных чисел соответствует действительное число, «равное» сумме (или произведению) соответствующих действительных чисел. Итак, соответствие между комплексными числами вида a + 0i и действительным числом а таково, что в результате выполнения арифметических действий над соответствующими компонентами получаются соответственные результаты. Взаимно-однозначное соответствие, которое сохраняется при выполнении действий, называется изоморфизмом. Это позволяет отождествить число a + 0i с действительным числом а и рассматривать всякое действительное число как частный случай комплексного.

Следствие . Квадрат числа i равен – 1.

i 2 = i i = (0 +1i)(0 +1i) = (0 – 1) + (0·1 + 1·0)i = — 1.

Теорема. Для сложения и умножения комплексных чисел остаются в силе основные законы действий.

Определения:

1. Действительное число а называется действительной частью комплексного числа z = a + bi. Rez=a

2. Число b называется мнимой частью комплексного числа z, число b — коэффициентом при мнимой части z. Imz=b.

3. Числа a + bi и a – bi называются сопряжёнными.

Число, сопряжённое числу z = a + bi обозначается символом

= a — bi.

Пример. z =3 + i , = 3 — i.

Теорема. Сумма и произведение двух сопряжённых комплексных чисел действительны.

Доказательство. Имеем

В множестве комплексных чисел выполнимы действия, обратные сложению и умножению.

Вычитание. Пусть z 1 = a 1 + b 1 i и z 2 = a 2 + b 2 i — данные комплексные числа. разность z 1 z 2 есть число z = x + y i , удовлетворяющее условию z 1 = z 2 + z или

а 1 + b 1 i = (a 2 + x) + (b 2 + y)i.

Для определения x и y получаем систему уравнений a 2 + x = а 1 и b 2 + y = b 1 , имеющую единственное решение:

x = а 1 — a 2 , y = b 1 — b 2 ,

z = (а 1 + b 1 i) – (а 2 + b 2 i) = а 1 – а 2 +(b 1 — b 2)i.

Вычитание можно заменить сложением с числом, противоположным вычитаемому:

z = (а 1 + b 1 i) – (а 2 + b 2 i) = (а 1 + b 1 i) + (- а 2 — b 2 i).

Деление.

Частное чисел z 1 и z 2 ≠ 0 есть число z = x + y i , удовлетворяющее условию z 1 = z 2 z или

а 1 + b 1 i = (a 2 + b 2 i) (x + yi),

следовательно,

а 1 + b 1 i = a 2 x — b 2 y+ (b 2 x + a 2 y)i,

откуда получаем систему уравнений:

a 2 x — b 2 y = a 1 ,

b 2 x + a 2 y = b 1 .

Решением которой будут

следовательно,

Практически для нахождения частного умножают делимое и делитель на число , сопряжённое делителю:

Так, например,

В частности число , обратное данному числу z , можно представить в виде

Примечание. В множестве комплексных чисел остаётся в силе теорема: еслипроизведение равно нулю, то хотя бы один из сомножителей равен нулю.

В самом деле, если z 1 z 2 =0 и если z 1 ≠ 0, то умножая на , получим

что и требовалось доказать.

При выполнении арифметических действий над комплексными числами надлежит руководствоваться следующим общим правилом: действия выполняются по обычным правилам действий над алгебраическими выражениями с последующей заменой i 2 на -1.

Теорема. При замене каждого из компонентов сопряжённым ему числом результат действия тоже заменяется сопряжённым числом.

Доказательство заключается в непосредственной проверке. Так, например, если каждое слагаемое z 1 = a 1 + b 1 i и z 2 = a 2 + b 2 i заменить сопряжённым числом, то получим число, сопряжённое сумме z 1 + z 2 .

cледовательно,

Аналогично для произведения имеем:

Предыдущая567891011121314151617181920Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Матричные уравнения

Каталин Дэвид

AX = B, где матрица A обратима

Поскольку умножение матриц не всегда коммутативно, умножаем слева обе части уравнения на$ A^{-1}$.

$A^{-1}\cdot|A\cdot X = B$

$A^{-1}\cdot A\cdot X = A^{-1}\cdot B$

$I_{n}\cdot X = A^{-1}\cdot B$


$\color{red}{X =A^{-1}\cdot B}$

Пример 50
Решить уравнение
$\begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}\cdot X \begin{pmatrix} 3 & 5\\ 2 & 1 \end{pmatrix}$


Теорема 2. Критерий существования обратной матрицы.

Умножаем слева на обратную ей матрицу.
$\begin{pmatrix} 1 & 3\\ 2 & 5\\ \end{pmatrix}^{-1}\cdot \begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}\cdot X= \begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}^{-1}\cdot \begin{pmatrix} 3 & 5\\ 2 & 1 \end{pmatrix}$

$I_{2}\cdot X = \begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}^{-1}\cdot \begin{pmatrix} 3 & 5\\ 2 & 1 \end{pmatrix}$

$X=\begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}^{-1}\cdot \begin{pmatrix} 3 & 5\\ 2 & 1 \end{pmatrix}$

$\begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}^{-1}= \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix}\rightarrow X= \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix}\cdot \begin{pmatrix} 3 & 5\\ 2 & 1 \end{pmatrix}= \begin{pmatrix} -9 & -22\\ 4 & 9 \end{pmatrix}$

XA = B, где матрица A обратима

Поскольку умножение матриц не всегда коммутативно, умножаем справа обе части уравнения на$ A^{-1}$.

$X\cdot A = B |\cdot A^{-1}$

$X\cdot A\cdot A^{-1} = B\cdot A^{-1}$

$X \cdot I_{n} =B\cdot A^{-1}$

Решение уравнения имеет общий вид
$\color{red}{X =B\cdot A^{-1}}$

Пример 51
Решить уравнение
$X \begin{pmatrix} 1 & 3\\ 2 & 5\\ \end{pmatrix}= \begin{pmatrix} 3 & 5\\ 2 & 1\\ \end{pmatrix}$

Убедимся, что первая матрица обратима.
$\left|A\right|=5-6=-1\neq 0$, следовательно, матрица обратима.

Умножаем справа на обратную ей матрицу.
$X \begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}\cdot \begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}^{-1}= \begin{pmatrix} 3 & 5\\ 2 & 1 \end{pmatrix}\cdot \begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}^{-1}$

$X\cdot I_{2}= \begin{pmatrix} 3 & 5\\ 2 & 1 \end{pmatrix}\cdot \begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}^{-1}$

$X=\begin{pmatrix} 3 & 5\\ 2 & 1 \end{pmatrix}\cdot \begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}^{-1}$

$\begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}^{-1}= \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix}\rightarrow X= \begin{pmatrix} 3 & 5\\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix}= \begin{pmatrix} -5 & 4\\ -8 & 5 \end{pmatrix}$

МатрицыУмножение матрицОпределителиРанг матрицыОбратные матрицыСистемы уравненийКалькуляторы для матриц

межд. изумления, удивления; радости, надежды; внезапности, испуга; горя, отчаяния. Ах, как хорошо! Ах кабы так! Ах, как ты меня испугал! Ах, да руками мах. Ах, ах, а пособить нечем. Ах, судья, судья: четыре полы, восемь карманов.

| Иногда ах обращается в сущ. , муж. Ахи, да охи, да бабьи вздохи. Что тут было ахов, удивления, радости. Ахти, ахти мне, восклицание горя, печали; увы; Ахти мне, все товарищи в тюрьме — что-то будет и мне? Охти-axmul как-то замуж идти? Не ахти мне, не на диво, не больно хорошо. Аханьки мне, ахаханьки, выражает как бы сострадание к самому себе, либо к другому. Аханьки, как детки махоньки, это род привета. Ахать, ахивать, ахнуть, дивиться; радоваться чему, горевать, стонать, восклицать ах! Ахал бы, да дома, по себе. Ахал бы дядя, на себя глядя, заботься всяк о себе, о своем деле. Я так и ахнул, испугался, изумился. Ахивали и мы, видывали горе. Холостой подчас охнет, а женатый ахнет.

Обратная матрица

Доахаться до чего. Заахали мы, узнав об этом. Наахали, да и пошли. Наахался я на чудеса эти. Отахали, что ли? Поахайте еще. Одна ахает, другая подахивает. Почто разахался? Взахаешься поневоле. Не так ахаешь, переахай снова, насмешка над бесполезными взывами. Весь денечек проахала. Пришла баба поахать, а пришлось охнуть; пришла поглядеть на чужую радость или горе, а приключилась своя беда. Аханье ср. неумеренное изъявление радости, изумления, горя, отчаянья: ахальщик муж. ахальщица жен. ахала об. кто всему дивится, выхваляет чужое не в меру, завидует. На каждого баяльщика по семи ахальщиков. На каждого бахаря по семи ахаль. Аховой ниж. ахтительный пенз. восхитительный, неимоверно прекрасный, красивый, вызывающий восклицание изумления и одобрения. Аховой платочек. Ахва? жен. , арх.-он. дыра, прореха; пробоина, прорез в шкуре, порча ее от неосторожного выстрела, укола или удара чем. Аховня? жен. испорченная ахвою шкура, аховая или ахводная шкура. Ахвить, ахводить?, испортить шкуру выстрелом, уколом, порубом. Аховая суббота, при платежах, когда неисправные ахают по деньгам.

Лемма: Для любой матрицы А произведение ее на единичную матрицу, соответствующего размера, равно матрице А : АЕ=ЕА=А .

Матрица В называется обратной к матрице А , если АВ=ВА=Е . Обратная матрица к матрице А обозначается А -1 .

Обратная матрица существует только для квадратной матрицы.

Теорема: Квадратная матрица А имеет обратную тогда и только тогда, когда определитель этой матрицы отличен от нуля (|A|≠0).

Алгоритм нахождения обратной матрицы А -1:

(для матриц второго и третьего порядков)


«Если Вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи , то решайте их
Д. Пойа (1887-1985 г.)

(Математик. Внёс большой вклад в популяризацию математики. Написал несколько книг о том, как решают задачи и как надо учить решать задачи.)


Top