Работа силы приложенной к вращающемуся телу. Работа внешних сил, приложенных к абсолютно твердому телу. Силы, действующие в механизмах

m A = 2m кг, m B =m кг, m C = m кг,

40 см =0,4 м, r B = 20 см =0,2 м,

R C = 10 см= 0,1 м,

i BZ =

30 см =0,3 м, α = 30 o , β = 60 o ,

Найти: V A , a A , T .

1. Изобразим на схеме механической системы (рис. 26) все внешние силы:

P A , N A , F тр. , P B , N B , P C , N C .

2. Выразим все необходимые линейные и угловые скорости через искомую скорость V A .(рис.26)

ω B = r A = R B ; B B

V B = R B V A ; r B

PV A

C R V C

ω С = V B = R B V A ; 2 R C r B 2 R C

T 1 положениях.

T 0 = 0 - система находилась в покое;

T 1 = T A + T B + T C ;

Тело А движется поступательно;

TA = 0,5 mA VA 2 = mV 2 A

Тело В совершает вращательное движение вокруг оси OZ, проходящей перпендикулярно плоскости чертежа через точку О.

T B = 0,5 I ZBω B2 ;

где I ZB = m Bi BZ2 = mi BZ2

инерции тела В относительно

m i2 V 2

1,125mV 2

2r 2

Тело С совершает плоско-параллельное движение:

m V2

J w2

C C +

где J ZC =

Момент инерции тела С относительно оси, проходя-

щей через центр масс тела С перпендикулярно плоскости чертежа;

w C =

Угловая скорость тела С, т. Р – МЦС тела С.

2 r R

1 mR2 V 2

R2 V 2

3 mR2

0,75mV 2

4 r 2

16r 2

4 r 2 R2

T 1 = mV A 2 + 1,125mV A 2 + 0,75mV A 2 = 2,875mV A 2 .

4.Определим сумму работ всех внешних сил на заданном перемещении s.

AE = A(

)+ A (

)+ A (

)+ A (

)+ A (

)+ A (

)+ A (

∑i

P A ) = m A qS sinβ = 2 m q 0,68S = 1,72 mqS ;

) = −F S = −μ N

S = − μ m

q cos β S = − μ 2mq cos600 S =

= − 0,1 2 0,5mqS = − 0,1mqS

A ) = 0; A (

C ) = 0; cилы

перпендикулярны направлению

перемещения;

B ) = 0;

т.к. точка О неподвижна.

P B ) = 0;

– перемещение центра масс тела С.

P C ) =− m C qS C sinα ;где

Так как перемещения точек изменяются пропорционально их скоростям,

SC = R B S

2r B

) =− m q

S =− mq

S =− 0,5 mqS

2r B

∑ A i E = 1,72mqS − 0,1mqS − 0,5mqS = 1,12mqS .

Поскольку значение суммы работ всех внешних сил положительно, фактическое направление скорости V A совпадает с указанным на рис.26.

5. Найдем значение скорости V A из формулы T 1 − T 0 = ∑ A i E

2,875mV A 2 = 1,12mqS

VA =

1,12qS

2,76м / с .

f (x , y , z , t ) = 0 .

6. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ МЕХАНИКИ

6.1. Связи и их уравнения

Изучение элементов аналитической механики мы начнем с более подробного рассмотрения связей.

Несвободной материальной точкой называется точка, свобода движения которой ограничена. Тела, ограничивающие движение точки, называются связями. Пусть связь представляет собой поверхность некоторого тела, по которой движется точка. Тогда координаты точки должны удовлетворять уравнению этой поверхности, называемому уравнением связи :

f (x i , y i , z i ) = 0 .

Системы различают свободные и несвободные .

Система материальных точек называется свободной, если все входящие в нее точки могут занимать произвольные положения и иметь произвольные скорости. В противном случае система называется несвободной.

6.2. Классификация связей

Связи классифицируются по следующим признакам:

1) стационарные и нестационарные;

2) голономные и неголономные;

3) удерживающие и неудерживающие.

Стационарными называются такие связи, уравнения которых не со-

держат время t в явном виде. Уравнение стационарной связи имеет вид: f (x i , y i , z i ) = 0 .

Связи, которые описываются уравнениями, содержащими время t явно, называются нестационарными. Аналитически они выражаются уравнением

Голономными связями называются связи, не накладывающие ограничения на скорости точек системы. Выше указанные связи являются также и голономными.

Связи, накладывающие ограничения не только на координаты, но и на скорости точек системы, называются неголономными . Их аналитическое выражение в общем случае имеет следующий вид

f (t , x i , y i , z i , x & i , y & i , z & i ) = 0

Механические системы, подчиненные голономным связям, называются голономными системами. Если же в числе связей имеются неголономные, то системы называются неголономными.

Классическим примером движения неголономной системы может служить качение твердого шара по шероховатой поверхности (например, бильярдного шара).

Удерживающими связями называются связи, которые не допускают перемещений, в результате которых точки системы могли бы освободиться от связи.

Примером удерживающей связи является первый пример. Другим примером могут служить две параллельные плоскости, между которыми происходит движение шарика.

Для удерживающей связи уравнение дается равенством вида f (t , x i , y i , z i , x & i , y & i , z & i ) = 0 .

Удерживающие связи иногда называются двухсторонними связями. Связи, допускающие перемещения, в результате которых точки системы

могут освободиться от связи без ее разрушения, называются неудерживающими . Иногда такие связи называют односторонними. Уравнение неудерживающей связи имеет вид неравенства

f (t , x i , y i , z i , x & i , y & i , z & i ) ≤ 0.

Примерами неудерживающих связей являются второй и третий примеры. Другим примером такой связи может служить одна плоскость, по которой движется шар.

6.3. Возможные перемещения системы. Число степеней свободы. Идеальные связи

Представим себе какое-либо несвободное тело, например, куб, лежащий на плоскости. Дадим мысленно этому кубу какое-либо бесконечно малое перемещение. Вообразим, например, что мы немного приподняли его над плоскостью; при таком перемещении связь куба с плоскостью будет нарушена. Но мы можем дать кубу и такое воображаемое бесконечно малое перемещение, которое не нарушит связи; таким перемещением является любое перемещение по плоскости.

Итак, возможными перемещениями несвободной механической системы называются воображаемые бесконечно малые перемещения, допускаемые в данный момент наложенными на систему связями.

В нашем примере для куба возможным перемещением является всякое воображаемое бесконечно малое перемещение его вдоль плоскости.

Возможные перемещения точек механической системы рассматривают как величины первого порядка малости, пренебрегая при этом величинами высших порядков малости. Поэтому криволинейные перемещения точек за-

меняют прямолинейными отрезками, отложенными по касательным к траекториям точек и обозначают δ r .

Так, например, возможным перемещением рычага АВ является его поворот на бесконечно малый угол δϕ вокруг оси О (рис. 27).

При этом повороте точки А и В должны переместиться по дугам окружностей АА1 и ВВ1 . Но с точностью до величин первого порядка малости эти

перемещения можно заменить возможными перемещениями δ r A = AA ′ и δ r B = BB ′ в виде прямолинейных отрезков, отложенных по касательным к

траекториям точек, а по величине соответственно равных:

δ rA = ОА δϕ и δ rВ = ОВ δϕ .

Действительные перемещения несвободной механической системы dr , которая движется под действием приложенных к ней сил, входят в число ее возможных перемещений и являются их частным случаем. Однако это справедливо лишь для стационарных связей. В случае нестационарных связей действительные перемещения системы не относятся к числу ее возможных перемещений.

В общем случае для точек системы может существовать множество различных возможных перемещений. Однако для каждой системы, в зависимости от характера наложенных на нее связей, можно указать определенное число таких независимых между собой перемещений, что всякое другое возможное перемещение может быть представлено как их геометрическая сумма. Например, шарик, лежащий на какой-нибудь плоскости, можно переместить вдоль этой плоскости по множеству направлений. Однако любое его возможное перемещение δ r можно получить как сумму двух перемещений

δ х и δ r 2 вдоль лежащих в этой плоскости взаимно перпендикулярных осей:

δ r = δ r1 + δ r2 .

Число независимых возможных перемещений механической системы определяет число степеней свободы этой системы.

Так, рассматриваемый выше шарик на плоскости, если его считать материальной точкой, имеет две степени свободы. У рассмотренного выше куба на плоскости 3 степени свободы – два поступательных перемещения вдоль осей координат и одно вращательное вокруг вертикальной оси. Рычаг, закрепленный на оси, имеет одну степень свободы. Свободное твердое тело име-

ет шесть степеней свободы – независимыми перемещениями являются три поступательных перемещения вдоль осей координат и три вращательных вокруг этих осей.

В заключение введем понятие возможной работы сил, приложенных к системе.

δ r i

Рассмотрим две произвольные точки твердого тела М 1 и М 2 , являющиеся частью механической системы. Проведем построения (см. рис.14.13).

Внутренние силы P J 1 , P J 2 , действующие со стороны одной точки на другую, на основании закона равенства действия и противодействия равны по модулю и противонапралены P J 1 = - P J 2 .

Пусть в данное мгновение скорости точек равны соответственно u 1 и u 2 и за промежуток времени приращения вдоль векторов составляют ds 1 = u 1 dt , ds 2 = u 2 dt .

Т.к., на основании 1-го следствия теоремы о скоростях точек плоской фигуры проекции векторов скоростей на направление отрезка М 1 М 2 равны, то и проекции элементарных перемещений этих точек будут равны.

Поэтому, вычисляя сумму элементарных работ 2-х внутренних сил на рассматриваемом перемещении и учитывая их равенство и противонаправленность получим

P J 1 ds 1 cos(P J 1 , u 1) + P J 2 ds 1 cos(P J 2 , u 2)= P J 1 * M 1 M’ 1 - P J 1 *M 2 M’ 2 = 0.

Поскольку каждой внутренней силе соответствует другая, равная по модулю и противонапраленная, то сумма элементарных работ всех внутренних сил равна нулю.

Конечное перемещение является совокупностью элементарных перемещений, а поэтому

А j = 0 ,

т.е. сумма работ внутренних сил твердого тела на любом его перемещении равна нулю.

Поступательное движение твердого тела .

При поступательном движении твердого тела траектории всех его точек тождественны и параллельны. Поэтому векторы элементарных перемещений геометрически равны.

Элементарная работа силы P E i

d A E i = P E i dr.

Для всех сил будет

d A=Sd A E i = S P E i dr= dr S P E = dr R E .

Следовательно,

d A=dr R E . (14-46)

Элементарная работа сил, приложенных к твердому телу, движущемуся поступательно, равна элементарной работе главного вектора сил .

А= . (14-47)

Элементарная работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси, равна произведению главного момента внешних сил относительно оси вращения на приращение угла поворота .

Работа на конечном перемещении

SA i = , (14-48)

где - главный момент внешних сил относительно оси вращения.

Если главный момент постоянен, то

SA i = E z = E z (j 2 - j 1). (14-49)

В этом случае сумма работ на конечном перемещении равна произведению главного момента внешних сил на конечное изменение угла поворота тела.

Тогда мощность

N= =M E z dj/dt= M E z w. (14-50)

В общем случае движения элементарная работа внешних сил, приложенных к свободному твердому телу, равна

dA= SdA i = R E dr O + M E W da, (14-51)

где M E W - главный момент внешних сил относительно мгновенной оси; da - элементарный угол поворота относительно мгновенной оси.

14.10. Сопротивление при качении .

На цилиндрический каток, находящийся на горизонтальной плоскости в состоянии покоя (рис.14.14,а) действуют две взаимно уравновешивающиеся силы: вес катка G и нормальная реакция плоскости N = -G .

Если под действием горизонтальной силы Р , приложенной в центре катка С, он катится по плоскости без скольжения, то силы G , N образуют пару сил, препятствующую качению (рис. 14.14,б).

Возникновение этой пары сил обусловлено деформацией контактирующих поверхностей катка и плоскости. Линия действия реакции N оказывается сдвинутой на некоторое расстояние d от линии действия силы G.

Момент пары сил G , N называется моментом сопротивления качению. Его величина определяется произведением

М сопр = Nd . (14-52)

Коэффициент качения выражается в линейных единицах, т.е. [d]= см. Например, стальной бандаж по стальному рельсу d = 0,005 см.; дерево по стали d = 0,03- 0,04 см.

Определим наименьшую горизонтальную силу Р , приложенную к центру катка.

Чтобы каток начал катиться, момент пары сил, составленный силой Р и силой сцепления F сц, должен стать больше момента сопротивления, т.е.

PR> Nd .

Откуда P> Nd/R .

Т.к. здесь N=G, то

В разделе "Кинематика" установлено, что скорость любой точки твердого тела геометрически складывается из скорости точки, принятой за полюс, и скорости, полученной точкой при сферическом движении тела вокруг полюса. В динамике за полюс всегда принимают центр масс тела. Скорость любой точки тела определяется по формуле

– скорость центра масс тела;

– вектор мгновенной угловой скорости тела;

– радиус-вектор по отношению к центру масс тела.

Для мощности силы, приложенной к абсолютно твердому телу, получаем:

Особый интерес представляет плоскопараллельное движение твердого тела. В этом важном частном случае мощность силы может быть вычислена по формуле:

где – угол между векторами силы и скорости центра масс тела.

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механикакраткий курс конспект лекций по теоретической механике

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования.. московский государственный строительный университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные законы механики
Теоретическая механика относится к числу так называемых аксиоматических наук. В ее основе лежит система исходных положений – аксиом, принимаемых без доказательства, но проверенных не только прямыми

Аксиома 3
Две материальные точки взаимодействуют с силами, равными по модулю и направленными по одной прямой в противоположные стороны (Рис.!.2). Аксиома 4(Принцип

Скорость точки
Быстроту движения точки характеризует ее скорость, к определению которой мы сейчас переходим. Пусть в момент времени

Ускорение точки
Быстроту изменения вектора скорости характеризует ускорение точки. Пусть в момент времени точка нах

Аксиома 3
Система двух сил, приложенная к абсолютно твердому телу, уравновешена (эквивалентна нулю) тогда и только тогда, когда эти силы равны по модулю и действуют по одной прямой в противоположные

Момент силы относительно точки
Пусть дана сила, приложенная в точке

Момент силы относительно оси
Моментом силы относительно оси называется проекция на ось момента силы, вычисленного относительно любой точки этой оси:

Пара сил
Парой сил называется система двух сил, равных по модулю и действующих по параллельным прямым в противоположные стороны. Плоскость, в ко

Дифференциальные уравнения движения механической системы
Рассмотрим механическую систему, состоящую из материальных точек. Для каждой точки системы в инерциальной системе о

Основные свойства внутренних сил
Рассмотрим две любые точки механической системы и

Теорема об изменении количества движения механической системы
Сложим почленно все равенства (3.1): Учитывая первое основное св

Теорема об изменении кинетического момента
Умножим каждое из уравнений (3.1) слева векторно на радиус–вектор соответствующей точки и сложим

Условия равновесия
Остановимся на вопросах равновесия материальных тел, которые составляют существенную часть раздела "Статика" курса теоретической механики. Под равновесием в механике традиционно

Равновесие системы сил, линии действия которых лежат в одной плоскости
Во многих практически интересных случаях тело находится в равновесии под действием системы сил, линии действия которых расположены в одной плоскости. Примем эту плоскость за координатную

Расчет ферм
Особое место в ряду статических задач занимает расчет ферм. Фермой называется жесткая конструкция из прямолинейных стержней (Рис.3.3). Если все стержни фермы и вся приложенная к ней

Равновесие тела при наличии трения
Как известно, при скольжении тела по опорной поверхности возникает сопротивление, тормозящее скольжение. Это явление учитывается путем введения в рассмотрение силы трения.

Центр параллельных сил
Это понятие вводится для системы параллельных сил, имеющих равнодействующую, причем точки приложения сил системы – точки

Центр тяжести тела
Рассмотрим материальное тело, расположенное вблизи поверхности Земли (в поле земного притяжения). Допустим сначала, что тело состоит из конечного числа материальных точек, другими словами – частиц,

Центр масс механической системы. Теорема о движении центра масс
Инерционные свойства материального тела определяются не только его массой, но и характером распределения этой массы в теле. Существенную роль в описании такого распределения играет положение центра

ЛЕКЦИЯ 5
5.1. Движение абсолютно твёрдого тела Одной из важнейших задач механики является описание движения абсолютно твердого тела. В общем случае различные точки

Поступательное движение твердого тела
Поступательным называется движение твердого тела, при котором любая прямая, проведенная в теле, остается параллельной своему первоначальному положению во все время движения.

Кинематика вращательного движения твердого тела
При вращательном движении в теле существует единственная прямая, все точки которой

Скоростью тела
Окончательно получаем: (5.4) Формула (5.4) называется формулой Эйлера. На Рис.5.

Дифференциальное уравнение вращательного движения твердого тела
Вращение твердого тела, как и любое другое движение, происходит в результате воздействия внешних сил. Для описания вращательного движения используем теорему об изменении кинетического момента относ

Кинематика плоскопараллельного движения твердого тела
Движение тела называется плоскопараллельным, если расстояние от любой точки тела до некоторой неподвижной (основной) плоскости остается неизменным во все время движения

Дифференциальные уравнения плоскопараллельного движения твердого тела
При изучении кинематики плоско-параллельного движения твердого тела за полюс можно принимать любую точку тела. При решении задач динамики за полюс всегда принимают центр масс тела, а в качестве под

Система Кенига. Первая теорема Кенига
(Изучить самостоятельно) Пусть система отсчета неподвижная (инерциальная). Система

Работа и мощность силы. Потенциальная энергия
Половина произведения массы точки на квадрат ее скорости называется кинетической энергией материальной точки. Кинетической энергией механической системы назы

Теорема об изменении кинетической энергии механической системы
Теорема об изменении кинетической энергии относится к числу общих теорем динамики наряду с доказанными ранее теоремами об изменении количества движения и изменения момента количеств

Работа внутренних сил геометрически неизменяемой механической системы
Заметим, что в отличие от теоремы об изменении количества движения и теоремы об изменении кинетического момента в теорему об изменении кинетической энергии в общем случае входят внутренние силы.

Вычисление кинетической энергии абсолютно твердого тела
Получим формулы для вычисления кинетической энергии абсолютно твердого тела при некоторых его движениях. 1. При поступательном движении в любой момент времени скорости всех точек тела один

Работа силы тяжести
При вычислении работы силы тяжести будем считать, что мы рассматриваем ограниченную область пространства вблизи поверхности Земли, размеры которой малы по сравнению с размерами Земл

Работа упругой силы
Понятие упругой силы обычно ассоциируется с реакцией линейно–упругой пружины. Направим ось вдоль пр

Работа вращающего момента
Пусть сила приложена в некоторой точке тела, имеющего ось вращения. Тело вращается с угловой скорос

Возможные скорости и возможные перемещения
Понятия возможной скорости и возможного перемещения введем сначала для материальной точки, на которую наложена голономная удерживающая нестационарная связь. Возможной скоростью мат

Идеальные связи
Связи, наложенные на механическую систему, называются идеальными, если сумма работ всех реакций связей на любом возможном перемещении системы равна нулю:

Принцип возможных перемещений
Принцип возможных перемещений устанавливает условия равновесия механических систем. Под равновесием механической системы традиционно понимают состояние ее покоя по отношению к выбранной инерциально

Общее уравнение динамики
Рассмотрим механическую систему, состоящую из материальных точек, на которую наложены идеальные уде


Top