Скалярное произведение в. Скалярное произведение векторов: теория и решения задач. Скалярное произведение в координатах

В случае плоской задачи скалярное произведение векторов a = {a x ; a y } и b = {b x ; b y } можно найти воспользовавшись следующей формулой:

a · b = a x · b x + a y · b y

Формула скалярного произведения векторов для пространственных задач

В случае пространственной задачи скалярное произведение векторов a = {a x ; a y ; a z } и b = {b x ; b y ; b z } можно найти воспользовавшись следующей формулой:

a · b = a x · b x + a y · b y + a z · b z

Формула скалярного произведения n -мерных векторов

В случае n-мерного пространства скалярное произведение векторов a = {a 1 ; a 2 ; ... ; a n } и b = {b 1 ; b 2 ; ... ; b n } можно найти воспользовавшись следующей формулой:

a · b = a 1 · b 1 + a 2 · b 2 + ... + a n · b n

Свойства скалярного произведения векторов

1. Скалярное произведение вектора самого на себя всегда больше или равно нуля:

2. Скалярное произведение вектора самого на себя равно нулю тогда и только тогда, когда вектор равен нулевому вектору:

a · a = 0 <=> a = 0

3. Скалярное произведение вектора самого на себя равно квадрату его модуля:

4. Операция скалярного умножения коммуникативна:

5. Если скалярное произведение двух не нулевых векторов равно нулю, то эти вектора ортогональны:

a ≠ 0, b ≠ 0, a · b = 0 <=> a ┴ b

6. (αa) · b = α(a · b)

7. Операция скалярного умножения дистрибутивна:

(a + b) · c = a · c + b · c

Примеры задач на вычисление скалярного произведения векторов

Примеры вычисления скалярного произведения векторов для плоских задач

Найти скалярное произведение векторов a = {1; 2} и b = {4; 8}.

Решение: a · b = 1 · 4 + 2 · 8 = 4 + 16 = 20.

Найти скалярное произведение векторов a и b, если их длины |a| = 3, |b| = 6, а угол между векторами равен 60˚.

Решение: a · b = |a| · |b| cos α = 3 · 6 · cos 60˚ = 9.

Найти скалярное произведение векторов p = a + 3b и q = 5a - 3 b, если их длины |a| = 3, |b| = 2, а угол между векторами a и b равен 60˚.

Решение:

p · q = (a + 3b) · (5a - 3b) = 5 a · a - 3 a · b + 15 b · a - 9 b · b =

5 |a| 2 + 12 a · b - 9 |b| 2 = 5 · 3 2 + 12 · 3 · 2 · cos 60˚ - 9 · 2 2 = 45 +36 -36 = 45.

Пример вычисления скалярного произведения векторов для пространственных задач

Найти скалярное произведение векторов a = {1; 2; -5} и b = {4; 8; 1}.

Решение: a · b = 1 · 4 + 2 · 8 + (-5) · 1 = 4 + 16 - 5 = 15.

Пример вычисления скалярного произведения для n -мерных векторов

Найти скалярное произведение векторов a = {1; 2; -5; 2} и b = {4; 8; 1; -2}.


Решение: a · b = 1 · 4 + 2 · 8 + (-5) · 1 + 2 · (-2) = 4 + 16 - 5 -4 = 11.

13. Векторным произведением векторов и вектора называется третий вектор , определяемый следующим образом:

2) перпендикулярно, перпендикулярно. (1"")

3) векторы ориентированы также, как и базис всего пространства (положительно или отрицательно).

Обозначают: .

Физический смысл векторного произведения

― момент силы относительно точки О; ― радиус ― вектор точки приложения силы, тогда

причем, если перенести в точку О, то тройка, должна быть ориентирована как вектора базиса.

): ⟨ a | b ⟩ {\displaystyle \langle a|b\rangle }

В простейшем случае обычного пространства скалярное произведение ненулевых векторов и b {\displaystyle \mathbf {b} } определяется как произведение длин этих векторов на косинус угла между ними :

(a , b) = | a | | b | cos ⁡ (θ) {\displaystyle (\mathbf {a} ,\mathbf {b})=|\mathbf {a} ||\mathbf {b} |\cos(\theta)}

Равносильное определение: скалярное произведение есть произведение длины проекции первого вектора на второй и длины второго вектора (см. рисунок). Если хотя бы один из векторов нулевой, то произведение считается равным нулю .

У понятия скалярного произведения существует также большое количество обобщений для различных векторных пространств , то есть для множеств векторов с операциями сложения и умножения на скаляры . Данное выше геометрическое определение скалярного произведения в общем случае непригодно, так как неясно, что подразумевается под длинами векторов и величиной угла между ними. Поэтому в современной математике используется обратный подход: аксиоматически определяется скалярное произведение, а уже через него - длины и углы . В частности, скалярное произведение определяется для комплексных векторов , многомерных и бесконечномерных пространств , в тензорной алгебре .

Скалярное произведение и его обобщения играют чрезвычайно большую роль в векторной алгебре , теории многообразий , механике и физике. Например, работа силы при механическом перемещении равна скалярному произведения вектора силы на вектор перемещения .

Определение

Определение в евклидовом пространстве

В n {\displaystyle n} -мерном вещественном евклидовом пространстве векторы определяются своими координатами - наборами n {\displaystyle n} вещественных чисел в ортонормированном базисе . Определить скалярное произведение векторов можно так :

(a , b) = a 1 b 1 + a 2 b 2 + a 3 b 3 + ⋯ + a n b n {\displaystyle (\mathbf {a} ,\mathbf {b})=a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}+\dots +a_{n}b_{n}}

Проверка показывает, что все три аксиомы выполнены.

Например, скалярное произведение векторов { 1 , 3 , − 5 } {\displaystyle \{1,3,-5\}} и { 4 , − 2 , − 1 } {\displaystyle \{4,-2,-1\}} будет вычислено так:

{ 1 , 3 , − 5 } ⋅ { 4 , − 2 , − 1 } = 1 ⋅ 4 + 3 ⋅ (− 2) + (− 5) ⋅ (− 1) = 4 − 6 + 5 = 3. {\displaystyle {\begin{aligned}\ \{1,3,-5\}\cdot \{4,-2,-1\}&=1\cdot 4+3\cdot (-2)+(-5)\cdot (-1)\\&=4-6+5\\&=3.\end{aligned}}}

Для комплексных векторов a = { a 1 , a 2 … a n } , b = { b 1 , b 2 … b n } {\displaystyle \mathbf {a} =\{a_{1},a_{2}\dots a_{n}\},\mathbf {b} =\{b_{1},b_{2}\dots b_{n}\}} определим аналогично :

(a , b) = ∑ k = 1 n a k b k ¯ = a 1 b 1 ¯ + a 2 b 2 ¯ + ⋯ + a n b n ¯ {\displaystyle (\mathbf {a} ,\mathbf {b})=\sum _{k=1}^{n}a_{k}{\overline {b_{k}}}=a_{1}{\overline {b_{1}}}+a_{2}{\overline {b_{2}}}+\cdots +a_{n}{\overline {b_{n}}}} .

Пример (для n = 2 {\displaystyle n=2} ): { 1 + i , 2 } ⋅ { 2 + i , i } = (1 + i) ⋅ (2 + i ¯) + 2 ⋅ i ¯ = (1 + i) ⋅ (2 − i) + 2 ⋅ (− i) = 3 − i . {\displaystyle \{1+i,2\}\cdot \{2+i,i\}=(1+i)\cdot ({\overline {2+i}})+2\cdot {\overline {i}}=(1+i)\cdot (2-i)+2\cdot (-i)=3-i.}

Связанные определения

В современном аксиоматическом подходе уже на основе понятия скалярного произведения векторов вводятся следующие производные понятия :

Длина вектора, под которой обычно понимается его евклидова норма :

| a | = (a , a) {\displaystyle |\mathbf {a} |={\sqrt {(\mathbf {a} ,\mathbf {a})}}}

(термин "длина" обычно применяется к конечномерным векторам, однако в случае вычисления длины криволинейного пути часто используется и в случае бесконечномерных пространств).

Для любых элементов a , b {\displaystyle \mathbf {a} ,\mathbf {b} } векторного пространства со скалярным произведением выполняется неравенство:

| (a , b) | 2 ⩽ (a , a) (b , b) {\displaystyle \vert (\mathbf {a} ,\mathbf {b})\vert ^{2}\leqslant (\mathbf {a} ,\mathbf {a})(\mathbf {b} ,\mathbf {b})}

В случае, если пространство является псевдоевклидовым , понятие угла определяется лишь для векторов, не содержащих изотропных прямых внутри образованного векторами сектора. Сам угол при этом вводится как число, гиперболический косинус которого равен отношению модуля скалярного произведения этих векторов к произведению их длин (норм):

| (a , b) | = | a | | b | ch ⁡ φ . {\displaystyle |(\mathbf {a} ,\mathbf {b})|=|\mathbf {a} ||\mathbf {b} |\operatorname {ch} \varphi .}
  • Ортогональными (перпендикулярными) называются векторы, скалярное произведение которых равно нулю. Это определение применимо к любым пространствам с положительно определённым скалярным произведением. Например, ортогональные многочлены на самом деле ортогональны (в смысле этого определения) друг другу в некотором гильбертовом пространстве.
  • Пространство (вещественное или комплексное) с положительно определённым скалярным произведением называется предгильбертовым пространством .
    • При этом конечномерное вещественное пространство с положительно определённым скалярным произведением называется также евклидовым , а комплексное - эрмитовым или унитарным пространством.
  • Случай, когда скалярное произведение не является знакоопределённым, приводит к т. н. пространствам с индефинитной метрикой . Скалярное произведение в таких пространствах уже не порождает нормы (и она обычно вводится дополнительно). Конечномерное вещественное пространство с индефинитной метрикой называется псевдоевклидовым (важнейшим частным случаем такого пространства является пространство Минковского). Среди бесконечномерных пространств с индефинитной метрикой важную роль играют пространства Понтрягина и пространства Крейна.

Свойства

  • Теорема косинусов легко выводится с использованием скалярного произведения: | B C | 2 = B C → 2 = (A C → − A B →) 2 = ⟨ A C → − A B → , A C → − A B → ⟩ = A C → 2 + A B → 2 − 2 ⟨ A C → , A B → ⟩ = | A B | 2 + | A C | 2 − 2 | A B | | A C | cos ⁡ A ^ {\displaystyle |BC|^{2}={\vec {BC}}^{2}=({\vec {AC}}-{\vec {AB}})^{2}=\langle {\vec {AC}}-{\vec {AB}},{\vec {AC}}-{\vec {AB}}\rangle ={\vec {AC}}^{2}+{\vec {AB}}^{2}-2\langle {\vec {AC}},{\vec {AB}}\rangle =|AB|^{2}+|AC|^{2}-2|AB||AC|\cos {\hat {A}}}
  • Оценка угла между векторами: в формуле (a , b) = | a | ⋅ | b | ⋅ cos ⁡ ∠ (a , b) {\displaystyle (\mathbf {\mathbf {a} } ,\mathbf {b})=|\mathbf {a} |\cdot |\mathbf {b} |\cdot \cos \angle {(\mathbf {a} ,\mathbf {b})}} знак определяется только косинусом угла (нормы векторов всегда положительны). Поэтому скалярное произведение > 0, если угол между векторами острый, и < 0, если угол между векторами тупой.
  • Проекция вектора на направление, определяемое единичным вектором e {\displaystyle \mathbf {e} } : a e = (a , e) = | a | | e | cos ⁡ ∠ (a , e) = | a | cos ⁡ ∠ (a , e) {\displaystyle a_{e}=(\mathbf {a} ,\mathbf {e})=|\mathbf {a} ||\mathbf {e} |\cos \angle {(\mathbf {a} ,\mathbf {e})}=|\mathbf {a} |\cos \angle {(\mathbf {a} ,\mathbf {e})}} , так как | e | = 1. {\displaystyle |\mathbf {e} |=1.}
  • Площадь параллелограмма, натянутого на два вектора a {\displaystyle \mathbf {a} \ } и b {\displaystyle \mathbf {b} \ } , равна
(a , a) (b , b) − (a , b) 2 {\displaystyle {\sqrt {(\mathbf {a} ,\mathbf {a})(\mathbf {b} ,\mathbf {b})-(\mathbf {a} ,\mathbf {b})^{2}}}\ }

Определение 1

Скалярное произведение векторов называют число, равное произведению дин этих векторов на косинус угла между ними.

Обозначение произведения векторов a → и b → имеет вид a → , b → . Преобразуем в формулу:

a → , b → = a → · b → · cos a → , b → ^ . a → и b → обозначают длины векторов, a → , b → ^ - обозначение угла между заданными векторами. Если хоть один вектор нулевой, то есть имеет значение 0, то и результат будет равен нулю, a → , b → = 0

При умножении вектора самого на себя, получим квадрат его дины:

a → , b → = a → · b → · cos a → , a → ^ = a → 2 · cos 0 = a → 2

Определение 2

Скалярное умножение вектора самого на себя называют скалярным квадратом.

Вычисляется по формуле:

a → , b → = a → · b → · cos a → , b → ^ .

Запись a → , b → = a → · b → · cos a → , b → ^ = a → · n p a → b → = b → · n p b → a → показывает, что n p b → a → - это числовая проекция a → на b → , n p a → a → - проекция b → на a → соостветсвенно.

Сформулируем определение произведения для двух векторов:

Скалярное произведение двух векторов a → на b → называют произведение длины вектора a → на проекцию b → на направление a → или произведение длины b → на проекцию a → соответственно.

Скалярное произведение в координатах

Вычисление скалярного произведения можно производить через координаты векторов в заданной плоскости или в пространстве.

Скаларное произведение двух векторов на плоскости, в трехмерном простарнстве называют сумму координат заданных векторов a → и b → .

При вычислении на плоскости скаларного произведения заданных векторов a → = (a x , a y) , b → = (b x , b y) в декартовой системе используют:

a → , b → = a x · b x + a y · b y ,

для трехмерного пространства применимо выражение:

a → , b → = a x · b x + a y · b y + a z · b z .

Фактически это является третьим определением скалярного произведения.

Докажем это.

Доказательство 1

Для доказательства используем a → , b → = a → · b → · cos a → , b → ^ = a x · b x + a y · b y для векторов a → = (a x , a y) , b → = (b x , b y) на декартовой системе.

Следует отложить векторы

O A → = a → = a x , a y и O B → = b → = b x , b y .

Тогда длина вектора A B → будет равна A B → = O B → - O A → = b → - a → = (b x - a x , b y - a y) .

Рассмотрим треугольник O A B .

A B 2 = O A 2 + O B 2 - 2 · O A · O B · cos (∠ A O B) верно, исходя из теоремы косинусов.

По условию видно, что O A = a → , O B = b → , A B = b → - a → , ∠ A O B = a → , b → ^ , значит, формулу нахождения угла между векторами запишем иначе

b → - a → 2 = a → 2 + b → 2 - 2 · a → · b → · cos (a → , b → ^) .

Тогда из первого определения следует, что b → - a → 2 = a → 2 + b → 2 - 2 · (a → , b →) , значит (a → , b →) = 1 2 · (a → 2 + b → 2 - b → - a → 2) .

Применив формулу вычисления длины векторов, получим:
a → , b → = 1 2 · ((a 2 x + a y 2) 2 + (b 2 x + b y 2) 2 - ((b x - a x) 2 + (b y - a y) 2) 2) = = 1 2 · (a 2 x + a 2 y + b 2 x + b 2 y - (b x - a x) 2 - (b y - a y) 2) = = a x · b x + a y · b y

Докажем равенства:

(a → , b →) = a → · b → · cos (a → , b → ^) = = a x · b x + a y · b y + a z · b z

– соответственно для векторов трехмерного пространства.

Скалярное произведение векторов с координатами говорит о том, что скалярный квадрат вектора равен сумме квадратов его координат в пространстве и на плоскости соответственно. a → = (a x , a y , a z) , b → = (b x , b y , b z) и (a → , a →) = a x 2 + a y 2 .

Скалярное произведение и его свойства

Существуют свойства скалярного произведения, которые применимы для a → , b → и c → :

  1. коммутативность (a → , b →) = (b → , a →) ;
  2. дистрибутивность (a → + b → , c →) = (a → , c →) + (b → , c →) , (a → + b → , c →) = (a → , b →) + (a → , c →) ;
  3. сочетательное свойство (λ · a → , b →) = λ · (a → , b →) , (a → , λ · b →) = λ · (a → , b →) , λ - любое число;
  4. скалярный квадрат всегда больше нуля (a → , a →) ≥ 0 , где (a → , a →) = 0 в том случае, когда a → нулевой.
Пример 1

Свойства объяснимы благодаря определению скалярного произведения на плоскости и свойствам при сложении и умножении действительных чисел.

Доказать свойство коммутативности (a → , b →) = (b → , a →) . Из определения имеем, что (a → , b →) = a y · b y + a y · b y и (b → , a →) = b x · a x + b y · a y .

По свойству коммутативности равенства a x · b x = b x · a x и a y · b y = b y · a y верны, значит a x · b x + a y · b y = b x · a x + b y · a y .

Отсюда следует, что (a → , b →) = (b → , a →) . Что и требовалось доказать.

Дистрибутивность справедлива для любых чисел:

(a (1) → + a (2) → + . . . + a (n) → , b →) = (a (1) → , b →) + (a (2) → , b →) + . . . + (a (n) → , b →)

и (a → , b (1) → + b (2) → + . . . + b (n) →) = (a → , b (1) →) + (a → , b (2) →) + . . . + (a → , b → (n)) ,

отсюда имеем

(a (1) → + a (2) → + . . . + a (n) → , b (1) → + b (2) → + . . . + b (m) →) = = (a (1) → , b (1) →) + (a (1) → , b (2) →) + . . . + (a (1) → , b (m) →) + + (a (2) → , b (1) →) + (a (2) → , b (2) →) + . . . + (a (2) → , b (m) →) + . . . + + (a (n) → , b (1) →) + (a (n) → , b (2) →) + . . . + (a (n) → , b (m) →)

Скалярное произведение с примерами и решениями

Любая задача такого плана решается с применением свойств и формул, касающихся скалярного произведения:

  1. (a → , b →) = a → · b → · cos (a → , b → ^) ;
  2. (a → , b →) = a → · n p a → b → = b → · n p b → a → ;
  3. (a → , b →) = a x · b x + a y · b y или (a → , b →) = a x · b x + a y · b y + a z · b z ;
  4. (a → , a →) = a → 2 .

Рассмотрим некоторые примеры решения.

Пример 2

Длина a → равна 3, длина b → равна 7. Найти скалярное произведение, если угол имеет 60 градусов.

Решение

По условию имеем все данные, поэтому вычисляем по формуле:

(a → , b →) = a → · b → · cos (a → , b → ^) = 3 · 7 · cos 60 ° = 3 · 7 · 1 2 = 21 2

Ответ: (a → , b →) = 21 2 .

Пример 3

Заданны векторы a → = (1 , - 1 , 2 - 3) , b → = (0 , 2 , 2 + 3) . Чему равно скалярной произведение.

Решение

В данном примере рассматривается формула вычисления по координатам, так как они заданы в условии задачи:

(a → , b →) = a x · b x + a y · b y + a z · b z = = 1 · 0 + (- 1) · 2 + (2 + 3) · (2 + 3) = = 0 - 2 + (2 - 9) = - 9

Ответ: (a → , b →) = - 9

Пример 4

Найти скалярное произведение A B → и A C → . На координатной плоскости заданы точки A (1 , - 3) , B (5 , 4) , C (1 , 1) .

Решение

Для начала вычисляются координаты векторов, так как по условию даны координаты точек:

A B → = (5 - 1 , 4 - (- 3)) = (4 , 7) A C → = (1 - 1 , 1 - (- 3)) = (0 , 4)

Подставив в формулу с использованием координат, получим:

(A B → , A C →) = 4 · 0 + 7 · 4 = 0 + 28 = 28 .

Ответ: (A B → , A C →) = 28 .

Пример 5

Заданы векторы a → = 7 · m → + 3 · n → и b → = 5 · m → + 8 · n → , найти их произведение. m → равен 3 и n → равен 2 единицам, они перпендикулярные.

Решение

(a → , b →) = (7 · m → + 3 · n → , 5 · m → + 8 · n →) . Применив свойство дистрибутивности, получим:

(7 · m → + 3 · n → , 5 · m → + 8 · n →) = = (7 · m → , 5 · m →) + (7 · m → , 8 · n →) + (3 · n → , 5 · m →) + (3 · n → , 8 · n →)

Выносим коэффициент за знак произведения и получим:

(7 · m → , 5 · m →) + (7 · m → , 8 · n →) + (3 · n → , 5 · m →) + (3 · n → , 8 · n →) = = 7 · 5 · (m → , m →) + 7 · 8 · (m → , n →) + 3 · 5 · (n → , m →) + 3 · 8 · (n → , n →) = = 35 · (m → , m →) + 56 · (m → , n →) + 15 · (n → , m →) + 24 · (n → , n →)

По свойству коммутативности преобразуем:

35 · (m → , m →) + 56 · (m → , n →) + 15 · (n → , m →) + 24 · (n → , n →) = = 35 · (m → , m →) + 56 · (m → , n →) + 15 · (m → , n →) + 24 · (n → , n →) = = 35 · (m → , m →) + 71 · (m → , n →) + 24 · (n → , n →)

В итоге получим:

(a → , b →) = 35 · (m → , m →) + 71 · (m → , n →) + 24 · (n → , n →) .

Теперь применим формулу для скалярного произведения с заданным по условию углом:

(a → , b →) = 35 · (m → , m →) + 71 · (m → , n →) + 24 · (n → , n →) = = 35 · m → 2 + 71 · m → · n → · cos (m → , n → ^) + 24 · n → 2 = = 35 · 3 2 + 71 · 3 · 2 · cos π 2 + 24 · 2 2 = 411 .

Ответ: (a → , b →) = 411

Если имеется числовая проекция.

Пример 6

Найти скалярное произведение a → и b → . Вектор a → имеет координаты a → = (9 , 3 , - 3) , проекция b → с координатами (- 3 , - 1 , 1) .

Решение

По условию векторы a → и проекция b → противоположно направленные, потому что a → = - 1 3 · n p a → b → → , значит проекция b → соответствует длине n p a → b → → , при чем со знаком «-»:

n p a → b → → = - n p a → b → → = - (- 3) 2 + (- 1) 2 + 1 2 = - 11 ,

Подставив в формулу, получим выражение:

(a → , b →) = a → · n p a → b → → = 9 2 + 3 2 + (- 3) 2 · (- 11) = - 33 .

Ответ: (a → , b →) = - 33 .

Задачи при известном скалярном произведении, где необходимо отыскать длину вектора или числовую проекцию.

Пример 7

Какое значение должна принять λ при заданном скалярном произведении a → = (1 , 0 , λ + 1) и b → = (λ , 1 , λ) будет равным -1.

Решение

Из формулы видно, что необходимо найти сумму произведений координат:

(a → , b →) = 1 · λ + 0 · 1 + (λ + 1) · λ = λ 2 + 2 · λ .

В дано имеем (a → , b →) = - 1 .

Чтобы найти λ , вычисляем уравнение:

λ 2 + 2 · λ = - 1 , отсюда λ = - 1 .

Ответ: λ = - 1 .

Физический смысл скалярного произведения

Механика рассматривает приложение скалярного произведения.

При работе А с постоянной силой F → перемещаемое тело из точки M в N можно найти произведение длин векторов F → и M N → с косинусом угла между ними, значит работа равна произведению векторов силы и перемещения:

A = (F → , M N →) .

Пример 8

Перемещение материальной точки на 3 метра под действием силы равной 5 ньтонов направлено под углом 45 градусов относительно оси. Найти A .

Решение

Так как работа – это произведение вектора силы на перемещение, значит, исходя из условия F → = 5 , S → = 3 , (F → , S → ^) = 45 ° , получим A = (F → , S →) = F → · S → · cos (F → , S → ^) = 5 · 3 · cos (45 °) = 15 2 2 .

Ответ: A = 15 2 2 .

Пример 9

Материальная точка, перемещаясь из M (2 , - 1 , - 3) в N (5 , 3 λ - 2 , 4) под силой F → = (3 , 1 , 2) , совершила работа равную 13 Дж. Вычислить длину перемещения.

Решение

При заданных координатах вектора M N → имеем M N → = (5 - 2 , 3 λ - 2 - (- 1) , 4 - (- 3)) = (3 , 3 λ - 1 , 7) .

По формуле нахождения работы с векторами F → = (3 , 1 , 2) и M N → = (3 , 3 λ - 1 , 7) получим A = (F ⇒ , M N →) = 3 · 3 + 1 · (3 λ - 1) + 2 · 7 = 22 + 3 λ .

По условию дано, что A = 13 Д ж, значит 22 + 3 λ = 13 . Отсюда следует λ = - 3 , значит и M N → = (3 , 3 λ - 1 , 7) = (3 , - 10 , 7) .

Чтобы найти длину перемещения M N → , применим формулу и подставим значения:

M N → = 3 2 + (- 10) 2 + 7 2 = 158 .

Ответ: 158 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Угол между векторами

Рассмотрим два данных вектора $\overrightarrow{a}$ и $\overrightarrow{b}$. Отложим от произвольно выбранной точки $O$ векторы $\overrightarrow{a}=\overrightarrow{OA}$ и $\overrightarrow{b}=\overrightarrow{OB}$, тогда угол $AOB$ называется углом между векторами $\overrightarrow{a}$ и $\overrightarrow{b}$ (рис. 1).

Рисунок 1.

Отметим здесь, что если векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ сонаправлены или один из них является нулевым вектором, тогда угол между векторами равен $0^0$.

Обозначение: $\widehat{\overrightarrow{a},\overrightarrow{b}}$

Понятие скалярного произведения векторов

Математически это определение можно записать следующим образом:

Скалярное произведение может равняться нулю в двух случаях:

    Если один из векторов будет нулевым вектором (Так как тогда его длина равна нулю).

    Если векторы будут взаимно перпендикулярны (то есть $cos{90}^0=0$).

Отметим также, что скалярное произведение больше нуля, если угол между этими векторами острый (так как ${cos \left(\widehat{\overrightarrow{a},\overrightarrow{b}}\right)\ } >0$), и меньше нуля, если угол между этими векторами тупой (так как ${cos \left(\widehat{\overrightarrow{a},\overrightarrow{b}}\right)\ }

С понятием скалярного произведения связано понятие скалярного квадрата.

Определение 2

Скалярным квадратом вектора $\overrightarrow{a}$ называется скалярное произведение этого вектора самого на себя.

Получаем, что скалярный квадрат равен

\[\overrightarrow{a}\overrightarrow{a}=\left|\overrightarrow{a}\right|\left|\overrightarrow{a}\right|{cos 0^0\ }=\left|\overrightarrow{a}\right|\left|\overrightarrow{a}\right|={\left|\overrightarrow{a}\right|}^2\]

Вычисление скалярного произведения по координатам векторов

Помимо стандартного способа нахождения значения скалярного произведения, который вытекает из определения, существует еще один способ.

Рассмотрим его.

Пусть векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ имеют координаты $\left(a_1,b_1\right)$ и $\left(a_2,b_2\right)$, соответственно.

Теорема 1

Скалярное произведение векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ равно сумме произведений соответствующих координат.

Математически это можно записать следующим образом

\[\overrightarrow{a}\overrightarrow{b}=a_1a_2+b_1b_2\]

Доказательство.

Теорема доказана.

Эта теорема имеет несколько следствий:

Следствие 1: Векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ перпендикулярны тогда и только тогда, когда $a_1a_2+b_1b_2=0$

Следствие 2: Косинус угла между векторами равен $cos\alpha =\frac{a_1a_2+b_1b_2}{\sqrt{a^2_1+b^2_1}\cdot \sqrt{a^2_2+b^2_2}}$

Свойства скалярного произведения векторов

Для любых трех векторов и действительного числа $k$ справедливо:

    ${\overrightarrow{a}}^2\ge 0$

    Данное свойство следует из определения скалярного квадрата (определение 2).

    Переместительный закон: $\overrightarrow{a}\overrightarrow{b}=\overrightarrow{b}\overrightarrow{a}$.

    Данное свойство следует из определения скалярного произведения (определение 1).

    Распределительный закон:

    $\left(\overrightarrow{a}+\overrightarrow{b}\right)\overrightarrow{c}=\overrightarrow{a}\overrightarrow{c}+\overrightarrow{b}\overrightarrow{c}$. \end{enumerate}

    По теореме 1, имеем:

    \[\left(\overrightarrow{a}+\overrightarrow{b}\right)\overrightarrow{c}=\left(a_1+a_2\right)a_3+\left(b_1+b_2\right)b_3=a_1a_3+a_2a_3+b_1b_3+b_2b_3==\overrightarrow{a}\overrightarrow{c}+\overrightarrow{b}\overrightarrow{c}\]

    Сочетательный закон: $\left(k\overrightarrow{a}\right)\overrightarrow{b}=k(\overrightarrow{a}\overrightarrow{b})$. \end{enumerate}

    По теореме 1, имеем:

    \[\left(k\overrightarrow{a}\right)\overrightarrow{b}=ka_1a_2+kb_1b_2=k\left(a_1a_2+b_1b_2\right)=k(\overrightarrow{a}\overrightarrow{b})\]

Пример задачи на вычисление скалярного произведения векторов

Пример 1

Найти скалярное произведение векторов $\overrightarrow{a}$ и $\overrightarrow{b}$, если $\left|\overrightarrow{a}\right|=3$ и $\left|\overrightarrow{b}\right|=2$, а угол между ними равен ${{30}^0,\ 45}^0,\ {90}^0,\ {135}^0$.

Решение.

Используя определение 1, получаем

Для ${30}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({30}^0\right)\ }=6\cdot \frac{\sqrt{3}}{2}=3\sqrt{3}\]

Для ${45}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({45}^0\right)\ }=6\cdot \frac{\sqrt{2}}{2}=3\sqrt{2}\]

Для ${90}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({90}^0\right)\ }=6\cdot 0=0\]

Для ${135}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({135}^0\right)\ }=6\cdot \left(-\frac{\sqrt{2}}{2}\right)=-3\sqrt{2}\]

Таким образом, длина вектора рассчитывается, как корень квадратный из суммы квадратов его координат
. Аналогично рассчитывается длинаn-мерного вектора
. Если вспомнить, что каждая координата вектора – это разность между координатами конца и начала, то мы получим формулу длины отрезка, т.е. евклидова расстояния между точками.

Скалярное произведение двух векторов на плоскости – это произведение длин этих векторов на косинус угла между ними:
. Можно доказать, что скалярное произведение двух векторов= (х 1 , х 2) и= (y 1 , y 2) равно сумме произведений соответствующих координат этих векторов:
= х 1 * y 1 + х 2 * y 2 .

В n-мерном пространстве скалярное произведение векторовX= (х 1 , х 2 ,...,х n) иY= (y 1 , y 2 ,...,y n) определяется, как сумма произведений их соответствующих координат:X*Y= х 1 * y 1 + х 2 * y 2 + ... + х n * y n .

Операция умножения векторов друг на другу аналогична умножению матрицы-строки на матрицу-столбец. Подчеркнем, что в результате будет получено число, а не вектор.

Скалярное произведение векторов обладает следующими свойствами (аксиомы):

1) Коммутативное свойство: X*Y=Y*X.

2) Дистрибутивное относительно сложения свойство: X(Y+Z) =X*Y+X*Z.

3) Для любого действительного числа 
.

4)
, еслиX– не нулевой вектор;
еслиX– нулевой вектор.

Линейное векторное пространство, в котором задано скалярное произведение векторов, удовлетворяющее четырем соответствующим аксиомам, называется евклидовым линейным векторным пространством .

Легко заметить, что при умножении любого вектора самого на себя мы получим квадрат его длины . Поэтому по-другомудлину вектора можно определить, как корень квадратный из его скалярного квадрата:.

Длина вектора обладает следующими свойствами:

1) |X| = 0Х = 0;

2) |X| = ||*|X|, где– действительное число;

3) |X*Y||X|*|Y| (неравенство Коши-Буняковского );

4) |X+Y||X|+|Y| (неравенство треугольника ).

Угол между векторами вn-мерном пространстве определяется, исходя из понятия скалярного произведения. В самом деле, если
, то
. Эта дробь не больше единицы (согласно неравенству Коши-Буняковского), поэтому отсюда можно найти.

Два вектора называют ортогональными илиперпендикулярными , если их скалярное произведение равно нулю. Из определения скалярного произведения следует, что нулевой вектор ортогонален любому вектору. Если оба ортогональных вектора ненулевые, то обязательноcos= 0, т.е=/2 = 90 о.

Рассмотрим еще раз рисунок 7.4. Из рисунка видно, что косинус угла наклона вектора к горизонтальной оси можно рассчитать как
, а косинус угланаклона вектора к вертикальной оси как
. Эти числа принято называтьнаправляющими косинусами . Легко убедиться, что сумма квадратов направляющих косинусов всегда равна единице:cos 2 +cos 2 = 1. Аналогично можно ввести понятия направляющих косинусов и для пространств большей размерности.

Базис векторного пространства

Для векторов можно определить понятия линейной комбинации ,линейной зависимости инезависимости аналогично тому, как эти понятия были введены для строк матрицы. Также справедливо, что если векторы линейно зависимы, то по крайней мере один из них можно линейно выразить через остальные (т.е. он является их линейной комбинацией). Верно и обратное утверждение: если один из векторов является линейной комбинацией остальных, то все эти векторы в совокупности линейно зависимы.

Отметим, что если среди векторов a l , a 2 ,...a m есть нулевой вектор, то эта совокупность векторов обязательно линейно зависима. В самом деле, мы получим l a l + 2 a 2 +...+ m a m = 0, если, например, приравняем коэффициент j при нулевом векторе к единице, а все остальные коэффициенты – к нулю. При этом не все коэффициенты будут равны нулю ( j ≠ 0).

Кроме того, если какая-то часть векторов из совокупности векторов линейно зависимы, то и все эти вектора - линейно зависимы. В самом деле, если какие-то вектора дают нулевой вектор в своей линейной комбинации с коэффициентами, которые не являются одновременно нулевыми, то к этой сумме произведений можно добавить остальные вектора, умноженные на нулевые коэффициенты, и она по-прежнему будет нулевым вектором.

Как определить, являются ли вектора линейно зависимыми?

Например, возьмем три вектора: а 1 = (1, 0, 1, 5), а 2 = (2, 1, 3, -2) и а 3 = (3, 1, 4, 3). Составим из них матрицу, в которой они будут являться столбцами:

Тогда вопрос о линейной зависимости сведется к определению ранга этой матрицы. Если он окажется равным трем, то все три столбца – линейно независимы, а если окажется меньше, то это будет говорить о линейной зависимости векторов.

Так как ранг равен 2, вектора линейно зависимы.

Отметим, что решение задачи можно было бы начать и с рассуждений, которые основаны на определении линейной независимости. А именно, составить векторное уравнение  l a l + 2 a 2 + 3 a 3 = 0, которое примет вид l *(1, 0, 1, 5) + 2 *(2, 1, 3, -2) + 3 *(3, 1, 4, 3) = (0, 0, 0, 0). Тогда мы получим систему уравнений:

Решение этой системы методом Гаусса сведется к получению той же самой ступенчатой матрицы, только в ней будет еще один столбец – свободных членов. Они все будут равны нулю, так как линейные преобразования нулей не могут привести к другому результату. Преобразованная система уравнений примет вид:

Решением этой системы будет (-с;-с; с), где с – произвольное число; например, (-1;-1;1). Это означает, что если взять  l = -1; 2 =-1 и 3 = 1, то l a l + 2 a 2 + 3 a 3 = 0, т.е. вектора на самом деле линейно зависимы.

Из решенного примера становится ясно, что если взять число векторов больше, чем размерность пространства, то они обязательно будут линейно зависимы. В самом деле, если бы в этом примере мы взяли пять векторов, то получили бы матрицу 4 х 5, ранг которой не мог бы оказаться больше четырех. Т.е. максимальное число линейно независимых столбцов все равно не было бы больше четырех. Два, три или четыре четырехмерных вектора могут оказаться линейно независимыми, а пять и больше – не могут. Следовательно, на плоскости могут оказаться линейно независимыми не более двух векторов. Любые три вектора в двумерном пространстве – линейно зависимы. В трехмерном пространстве любые четыре (или более) вектора – всегда линейно зависимы. И т.п.

Поэтому размерность пространства можно определить, как максимальное число линейно независимых векторов, которые могут в нем быть.

Совокупность n линейно независимых векторов n-мерного пространства R называют базисом этого пространства.

Теорема. Каждый вектор линейного пространства можно представить в виде линейной комбинации векторов базиса, и притом единственным способом.

Доказательство. Пусть векторы e l , e 2 ,...e n образуют базисn-мерного пространства R. Докажем, что любой вектор Х является линейной комбинацией этих векторов. Поскольку вместе с вектором Х число векторов станет (n +1), эти (n +1) векторов будут линейно зависимы, т.е. существуют числа l , 2 ,..., n ,, не равные одновременно нулю, такие что

 l e l + 2 e 2 +...+ n e n +Х = 0

При этом 0, т.к. в противном случае мы получили бы l e l + 2 e 2 +...+ n e n = 0, где не все коэффициенты l , 2 ,..., n равны нулю. Это означает, что векторы базиса оказались бы линейно зависимы. Следовательно, можно разделить обе части первого уравнения на:

( l /)e l + ( 2 /)e 2 +...+ ( n /)e n + Х = 0

Х = -( l /)e l - ( 2 /)e 2 -...- ( n /)e n

Х = x l e l +x 2 e 2 +...+x n e n ,

где х j = -( j /),
.

Теперь докажем, что такое представление в виде линейной комбинации является единственным. Предположим противное, т.е. что существует другое представление:

Х = y l e l +y 2 e 2 +...+y n e n

Вычтем из него почленно полученное ранее выражение:

0 = (y l – х 1)e l + (y 2 – х 2)e 2 +...+ (y n – х n)e n

Так как векторы базиса линейно независимы, получим, что (y j - х j) = 0,
, т.е.y j = х j . Итак, выражение оказалось тем же самым. Теорема доказана.

Выражение Х = x l e l +x 2 e 2 +...+x n e n называютразложением вектора Х по базису e l , e 2 ,...e n , а числа х l , х 2 ,...х n -координатами вектора х относительно этого базиса, или в этом базисе.

Можно доказать, что если nненулевых векторовn-мерного евклидова пространства попарно ортогональны, то они образуют базис. В самом деле, умножим обе части равенства l e l + 2 e 2 +...+ n e n = 0 на любой вектор е i . Получим  l (e l *е i) +  2 (e 2 *е i) +...+  n (e n *е i) = 0   i (e i *е i) = 0   i = 0 для  i.

Векторы e l , e 2 ,...e n n-мерного евклидова пространства образуютортонормированный базис , если эти векторы попарно ортогональны и норма каждого из них равна единице, т.е. если е i *e j = 0 приi≠jи |е i | = 1 дляi.

Теорема (без доказательства). Во всяком n-мерном евклидовом пространстве существует ортонормированный базис.

Примером ортонормированного базиса являют система n единичных векторов е i , у которыхi-я компонента равна единице, а остальные компоненты равны нулю. Каждый такой вектор называетсяорт . Например, вектора-орты (1, 0, 0), (0, 1, 0) и (0, 0, 1) образуют базис трехмерного пространства.


Top