Вывод уравнения малых продольных колебаний упругого стержня. Продольные и поперечные волны. Колебания стержней переменного сечения

ОПРЕДЕЛЕНИЕ

Продольная волна – это волна, при распространении которой смещение частиц среды происходит в направлении распространения волны (рис.1, а).

Причиной возникновения продольной волны является сжатия/растяжения, т.е. сопротивление среды изменению ее объема. В жидкостях или газах такая деформация сопровождается разрежением или уплотнением частиц среды. Продольные волны могут распространяться в любых средах – твердых, жидких и газообразных.

Примерами продольных волн являются волны в упругом стержне или звуковые волны в газах.

Поперечные волны

ОПРЕДЕЛЕНИЕ

Поперечная волна – это волна, при распространении которой смещение частиц среды происходит в направлении, перпендикулярном распространению волны (рис.1,б).

Причиной поперечной волны является деформация сдвига одного слоя среды относительно другого. При распространении поперечной волны в среде образуются гребни и впадины. Жидкости и газы, в отличие от твердых тел, не обладают упругостью по отношению к сдвигу слоев, т.е. не оказывают сопротивления изменению формы. Поэтому поперечные волны могут распространяться только в твердых телах.

Примерами поперечных волн могут служить волны, бегущие по натянутой веревке или по струне.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Если бросить на поверхность воды поплавок, то можно увидеть, что он движется, покачиваясь на волнах, по круговой . Таким образом, волна на поверхности жидкости имеет как поперечную, так и продольную компоненты. На поверхности жидкости также могут возникать волны особого типа – так называемые поверхностные волны . Они возникают в результате действия и силы поверхностного натяжения.

Примеры решения задач

ПРИМЕР 1

Задание Определить направление распространения поперечной волны, если поплавок в некоторый момент времени имеет направление скорости, указанное на рисунке.

Решение Сделаем рисунок.

Начертим поверхность волны вблизи поплавка через некоторый промежуток времени , учитывая, что за это время поплавок опустился вниз, так как его в момент времени была направлена вниз. Продолжив линию вправо и влево, покажем положение волны в момент времени . Сравнив положение волны в начальный момент времени (сплошная линия) и в момент времени (пунктирная линия), делаем вывод о том, что волна распространяется влево.

ISSN: 2310-7081 (online), 1991-8615 (print) doi: http://dx.doi УДК 517.956.3

ЗАДАЧА О ПРОДОЛЬНЫХ КОЛЕБАНИЯХ УПРУГО ЗАКРЕПЛЕННОГО НАГРУЖЕННОГО СТЕРЖНЯ

А. Б. Бейлин

Самарский государственный технический университет, Россия, 443100, Самара, ул. Молодогвардейская, 244.

Аннотация

Рассматриваются одномерные продольные колебания толстого короткого стержня, закреплённого на концах при помощи сосредоточенных масс и пружин. В качестве математической модели используется начально-краевая задача с динамическими краевыми условиями для гиперболического уравнения четвёртого порядка. Выбор именно этой модели обусловлен необходимостью учитывать эффекты деформации стержня в поперечном направлении, пренебрежение которыми, как показано Рэ-леем, приводит к ошибке, что подтверждено современной нелокальной концепцией изучения колебаний твёрдых тел. Доказано существование ортогональной с нагрузкой системы собственных функций исследуемой задачи и получено их представление. Установленные свойства собственных функций позволили применить метод разделения переменных и доказать существование единственного решения поставленной задачи.

Ключевые слова: динамические краевые условия, продольные колебания, ортогональность с нагрузкой, модель Рэлея.

Введение. В любой работающей механической системе возникают колебательные процессы, которые могут порождаться различными причинами. Колебательные процессы могут быть следствием конструктивных особенностей системы или перераспределения нагрузок между различными элементами штатно работающей конструкции.

Наличие в механизме источников колебательных процессов может затруднить диагностику его состояния и даже привести к нарушению режима его работы, а в некоторых случаях и к разрушению. Различные проблемы, связанные с нарушением точности и работоспособности механических систем в результате вибрации некоторых их элементов, на практике часто решаются экспериментально.

Вместе с тем колебательные процессы могут быть весьма полезными, например, для обработки материалов, сборки и разборки соединений . Ультразвуковые колебания позволяют не только интенсифицировать процессы резания (сверления, фрезерования, шлифования и т. д.) материалов с высокой твёрдостью (вольфрамосодержащих, титанокарбидных сталей и т. п.),

© 2016 Самарский государственный технический университет. Образец для цитирования

Бейлин А. Б. Задача о продольных колебаниях упруго закрепленного нагруженного стержня // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2016. T. 20, № 2. С. 249258. doi: 10.14498/vsgtu1474. Сведения об авторе

Александр Борисович Бейлин (к.т.н, доц.; [email protected]), доцент, каф. автоматизированных станочных и инструментальных систем.

но в некоторых случаях стать единственно возможным методом обработки хрупких материалов (германий, кремний, стекло и т. д.) . Элемент устройства (волновод), который передаёт ультразвуковые колебания от источника (вибратора) до инструмента, называется концентратором и может иметь различную форму: цилиндрическую, коническую, ступенчатую, экспоненциальную и т. д. . Его предназначение - донести до инструмента колебания нужной амплитуды.

Таким образом, следствия протекания колебательных процессов могут быть различными, как и причины, их вызывающие, поэтому естественно возникает необходимость теоретического изучения процессов колебания. Математическая модель распространения волн в относительно длинных и тонких твёрдых стержнях, в основе которой лежит волновое уравнение второго порядка, хорошо изучена и давно стала классикой . Однако, как показано Рэлеем , эта модель не вполне соответствует исследованию колебаний толстого короткого стержня, тогда как многие детали реальных механизмов можно интерпретировать как короткие и толстые стержни. В этом случае следует учитывать деформации стержня и в поперечном направлении. Математическая модель продольных колебаний толстого короткого стержня, в которой учтены эффекты поперечного движения стержня, называется стержнем Рэлея и базируется на гиперболическом уравнении четвёртого порядка

^ ^- IX (а(х) ё)- дх (ь(х))=; (хЛ (1)

коэффициенты которого имеют физический смысл :

д(х) = р(х)А(х), а(х) = А(х)Е(х), Ь(х) = р(х)и2(х)1р (х),

где А(х) -площадь поперечного сечения, р(х) -массовая плотность стержня, Е(х) -модуль Юнга, V(х) - коэффициент Пуассона, 1Р(х) -полярный момент инерции, и(х,Ь) - продольные смещения, подлежащие определению.

Идеи Рэлея нашли своё подтверждение и развитие в современных работах, посвященных процессам колебаний, а также теории пластичности. В обзорной статье обоснованы недостатки классических моделей, описывающих состояние и поведение твёрдых тел при нагрузке, в которых априори тело считается идеальным континуумом. Современный уровень развития естествознания требует построения новых моделей, адекватно описывающих исследуемые процессы, а разработанные в последние несколько десятилетий математические методы дают эту возможность. На этом пути в последнюю четверть прошлого века был предложен новый подход к изучению многих физических процессов, в том числе и упомянутых выше, основанный на понятии нелокальности (см. статью и список литературы в ней). Один из классов нелокальных моделей, выделенных авторами, назван «слабо нелокальными». Математические модели, принадлежащие этому классу, могут быть реализованы введением в уравнение, описывающее некоторый процесс, производных высокого порядка, позволяющих учитывать в некотором приближении взаимодействие внутренних элементов объекта изучения. Таким образом, модель Рэлея актуальна и в наше время.

1. Постановка задачи. Пусть концы стержня х = 0, х = I прикреплены к неподвижному основанию при помощи сосредоточенных масс Ы\, М2 и пружин, жёсткости которых К\ и К2. Будем считать, что стержень представляет собой тело вращения относительно оси 0х ив начальный момент времени находится в покое в положении равновесия. Тогда мы приходим к следующей начально-краевой задаче.

Задача. Найти в области Qт = {(0,1) х (0, Т) : 1,Т < те} "решение уравнения (1), удовлетворяющее начальным данным

и(х, 0) = (р(х), щ(х, 0) = ф(х) и граничным условиям

а(0)их(0, г) + ь(0)илй(0, г) - к^(0, г) - М1ии(0, г) = 0, а(1)их(1, г) + Ъ(1)ихы(1, г) + К2и(1, г) + М2иы(1, г) = 0. ()

В статье рассмотрены некоторые частные случаи задачи (1)-(2) и приведены примеры, в которых коэффициенты уравнения имеют явный вид и М\ = М2 = 0. В статье доказана однозначная слабая разрешимость поставленной задачи в общем случае.

Условия (2) обусловлены способом закрепления стержня: его концы прикреплены к неподвижным основаниям с помощью некоторых приспособлений, имеющих массы М\, М2, и пружин с жёсткостями К1, К2 соответственно. Наличие масс и учёт поперечных смещений приводит к условиям вида (2), содержащим производные по времени. Краевые условия, в которые входят производные по времени, называются динамическими. Они могут возникать в различных ситуациях, простейшие из которых описаны в учебнике , а гораздо более сложные -в монографии .

2. Изучение собственных колебаний стержня. Рассмотрим однородное уравнение, соответствующее уравнению (1). Так как коэффициенты зависят только от х, можно разделить переменные, представив и(х,г) = X(х)Т(г). Получим два уравнения:

т""(г) + \2т (г) = 0,

((а(х) - Л2Ъ(х))Х"(х))" + Л2дХ(х) = 0. (3)

Уравнение (3) сопровождается краевыми условиями

(а(0) - \2Ъ(0))Х"(0) - (К1 - \2М1)Х(0) = 0,

(а(1) - \2Ъ(1))Х"(1) + (К2 - \2М2)Х(I) = 0. (4)

Таким образом, мы пришли к задаче Штурма-Лиувилля, которая отличается от классической тем, что спектральный параметр Л входит в коэффициент при старшей производной уравнения, а также в краевые условия. Это обстоятельство не позволяет ссылаться на известные из литературы результаты, поэтому нашей ближайшей целью является изучение задачи (3), (4). Для успешной реализации метода разделения переменных нам нужна информация о существовании и расположении собственных чисел, о качественных

свойствах собственных функций: обладают ли они свойством ортогональности?

Покажем, что Л2 > 0. Предположим, что это не так. Пусть X(х) -собственная функция задачи (3), (4), соответствующая значению Л = 0. Умножим (3) на X(х) и проинтегрируем полученное равенство по промежутку (0,1). Интегрируя по частям и применяя краевые условия (4), после элементарных преобразований получим

1(0) - Л2Ъ(0))(а(1) - Л2Ъ(1)) I (дХ2 + ЪХ"2)йх+

Ы\Х 2(0) + М2Х 2(1)

I аХ"2<1х + К\Х2(0) + К2Х2(1). Jo

Заметим, что из физического смысла функции а(х), Ъ(х), д(х) положительны, Кг, Мг неотрицательны. Но тогда из полученного равенства следует, что Х"(х) = 0, Х(0) = Х(1) = 0, следовательно, Х(х) = 0, что противоречит сделанному предположению. Стало быть, и предположение о том, что нуль есть собственное число задачи (3), (4) неверно.

Представление решения уравнения (3) зависит от знака выражения а(х) - - Л2Ъ(х). Покажем, что а(х)-Л2Ъ(х) > 0 Ух е (0,1). Зафиксируем произвольно х е (0,1) и найдём значения в этой точке функций а(х), Ъ(х), д(х). Запишем уравнение (3) в виде

Х"(х) + VХ (х) = 0, (5)

где мы обозначили

в выбранной фиксированной точке, а условия (4) запишем в виде

Х"(0) - аХ (0) = 0, Х"(1) + вХ (I) = 0, (6)

где а, в легко вычисляются.

Как известно, классическая задача Штурма-Лиувилля (5), (6) имеет счётное множество собственных функций при V > 0, откуда в силу произвольности х следует нужное неравенство.

Собственные функции задачи (3), (4) обладают свойством ортогональности с нагрузкой , выраженным соотношением

I (дХт(х)Хп(х) + ЪХ"т(х)Х"п(х))<х+ ■)о

М1Хт(0)Хп(0) + М2Хт(1)Хп (I) = 0, (7)

которое можно получить стандартным способом (см., например, ), реализация которого в случае рассматриваемой задачи связана с элементарными, но кропотливыми вычислениями. Приведём кратко его вывод, опустив аргумент функций Хг(х) во избежание громоздкости.

Пусть Лт, Лп - различные собственные числа, Хт, Хп - соответствующие им собственные функции задачи (3), (4). Тогда

{(а - Л2тЪ)Х"т)" + Л2тдХт = 0, {(а - Л2пЪ)Х"п)" + Л2пдХп = 0.

Умножим первое из этих уравнений на Хп, а второе на Хт и вычтем из первого второе. После элементарных преобразований получим равенство

(Лт - Лп)ЯХтХп = (аХтХП)" - ЛП(ЪХтХ"п)" - (аХ"тХп)" + Лт(ЪХтХп)",

которое проинтегрируем по промежутку (0,1). В результате, учитывая (4) и сокращая на (Лт - Лп), получим соотношение (7).

Доказанные утверждения о свойствах собственных чисел и собственных функций задачи Штурма-Лиувилля (3), (4) позволяют применить для отыскания решения поставленной задачи метод разделения переменных.

3. Разрешимость задачи. Обозначим

С(СТ) = {и: и е С(Ст) П С2(Ст), иихх е С^т)}.

Теорема 1. Пусть а,Ъ е С1 , д е С. Тогда существует не более одного решения и е С^т) задачи (1), (2).

Доказательство. Предположим, что существует два различных решения задачи (1), (2), и1(х,г) и и2(х,г). Тогда, в силу линейности задачи, их разность и = и1 - и2 является решением однородной задачи, соответствующей (1), (2). Покажем, что её решение тривиально. Предварительно заметим, что из физического смысла коэффициентов уравнения и краевых условий функции а, Ъ, д положительны всюду в Qт, а М^, К^ неотрицательны.

Умножив равенство (1) на щ и проинтегрировав по области Qт, где т е и произвольно, после несложных преобразований получим

/ (ди2(х,т) + аи2х(х,т) + ЪиХл(х,т))йх+ ./о

К1и2(0, т) + М1и2(0, т) + К2и2(1, т) + М2и2(1, т) = 0,

откуда в силу произвольности т сразу вытекает справедливость утверждения теоремы. □

Доказательство существования решения проведём для случая постоянных коэффициентов.

Теорема 2. Пусть <р е С2, <р(0) = <р(1) = (0) = ц>"(\) = 0, имеет кусочно непрерывную производную третьего порядка в (0,1), ф е С 1, ф(0) = ф(1) =0 и имеет кусочно непрерывную производную второго порядка в (0,1), f е С(С^т), тогда решение задачи (1), (2) существует и может быть получено в виде суммы ряда по собственным функциям.

До к а з а т е л ь с т в о. Будем, как обычно, искать решение задачи в виде суммы

где первое слагаемое - решение поставленной задачи для однородного уравнения, соответствующего (1), второе - решение уравнения (1), удовлетворяющее нулевым начальным и граничным условиям. Воспользуемся результатами проведённых в предыдущем пункте исследований и запишем общее решение уравнения (3):

X(x) = Сг cos A J-+ C2 sin Aw-^rrx.

\¡ a - A2b \¡ a - A2b

Применив краевые условия (4), приходим к системе уравнений относительно Cj!

(a - A2b)c2 - (Ki - A2Mi)ci = 0,

(-A(a - A2b) sin Ayja-A¡bl + (K - A2M2) cos A^O-A^l) ci+

Приравнивая нулю ее определитель, получаем спектральное уравнение

ctg= {а - A4)A2" - (K - A?Mí)(K2 - A"M). (8)

ь Va - A2b A^q(a - A2b)(Ki + K2 - A2(Mi + M2))

Выясним, имеет ли это трансцендентное уравнение решения. Для этого рассмотрим функции, стоящие в левой и правой его частях, и исследуем их поведение. Не слишком ограничивая общность, положим

Mi = M2 = M, Кг = K2 = K,

что позволит слегка упростить необходимые вычисления. Уравнение (8) принимает вид

х I q , Aja - A2b Jq К - A2M ctg A\Z-^l =

a - A2b 2(K - A2M) 2А^^0-А2Ь" Обозначим

и запишем в новых обозначениях спектральное уравнение!

aqlß Kql2 + ß2 (Kb - aM)

2Kql2 + 2^2(Kb - aM) 2/j.aql

Анализ функций левой и правой частей последнего уравнения позволяет утверждать, что существует счётное множество его корней и, стало быть, счётное множество собственных функций задачи Штурма-Лиувилля (3), (4), которые с учетом соотношения, полученного из системы относительно c¿, можно выписать

v / л л I q K - х2пм. л i q

Xn(x) = COS XnJ-гутx + ----sin XnJ-гтутX.

V a - A2b AnVa - ftb^q V a - A2b

Теперь перейдём к отысканию решения, удовлетворяющего и начальным условиям. Решение задачи для однородного уравнения мы теперь легко найдём в виде ряда

u(x,t) = ^ Tn(t)Xn(x),

коэффициенты которого можно найти из начальных данных, пользуясь свойством ортогональности функций Xn(x), норма которых может быть получена из соотношения (7):

||X||2 = f (qX2 + bX%)dx + MiX2(0) + M2x2(l). ■Jo

Процесс нахождения функции v(x,t) также является, по существу, стандартным, но мы всё же заметим, что, отыскивая решение в традиционном виде

v(x,t) = ^ Tn(t)Xn(x),

мы получаем два уравнения. Действительно, учитывая вид собственных функций, уточним структуру ряда, в виде которого мы ищем решение:

j(x,t) = ^ (Vn(t)cos Xn^J a b x+

Wn(t) K-XnM~ sin Х^ГАягx). (9)

v JXnVa - xnb^q V a - xn "

Для выполнения нулевых начальных условий у(х, 0) = у^х, 0) = 0 потребуем, чтобы Уп(0) = УП(0) = 0, Шп(0) = Ш(0) = 0. Разложив f(х,г) в ряд Фурье по собственным функциям Хп(х), найдём коэффициенты ¡п(Ь) и дп(Ь). Подставив (9) в уравнение (1), записанное относительно у(х,Ь), после ряда преобразований получим уравнения для отыскания Уп(Ь) и Шп(Ь):

уц® + >&пЮ =

™ + xn Wn (<) = Xn (-a-iKrW g

Учитывая начальные условия Уп(0) = У,(0) = 0, Шп(0) = Ш,(0) = 0, приходим к задачам Коши относительно каждой из функций Уп(Ь) и Шп(Ь), однозначная разрешимость которых гарантирована условиями теоремы. Свойства начальных данных, сформулированные в теореме, не оставляют сомнений в сходимости всех рядов, возникших в ходе наших исследований и, стало быть, в существовании решения поставленной задачи. □

Заключение. Доказано существование ортогональной с нагрузкой системы собственных функций исследуемой задачи и получено их представление.

Установленные свойства собственных функций позволили доказать существование единственного решения поставленной задачи. Отметим, что полученные в статье результаты могут быть использованы как для дальнейших теоретических исследований задач с динамическими граничными условиями, так и для практических целей, а именно для расчёта продольных колебаний широкого круга технических объектов.

Александр Борисович Бейлин: http://orcid.org/0000-0002-4042-2860

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Нерубай М. С., Штриков Б. Л., Калашников В. В. Ультразвуковая механическая обработка и сборка. Самара: Самарское книжное изд-во, 1995. 191 с.

2. Хмелёв В. Н., Барсуков Р. В., Цыганок С. Н. Ультразвуковая размерная обработка материалов. Барнаул: Алтайский технический ун-т им. И.И. Ползунова, 1997. 120 с.

3. Кумабэ Д. Вибрационное резание. М.: Машиностроение, 1985. 424 с.

4. Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 2004. 798 с.

5. Стретт Дж. В. Теория звука. Т. 1. М.: ГИТТЛ, 1955. 504 с.

6. Rao J. S. Advanced Theory of Vibration: Nonlinear Vibration and One Dimensional Structures. New York: John Wiley & Sons, Inc., 1992. 431 pp.

7. Федотов И. А., Полянин А. Д., Шаталов М. Ю. Теория свободных и вынужденных колебаний твердого стержня, основанная на модели Рэлея// ДАН, 2007. Т. 417, №1. С. 56-61.

8. Bazant Z., Jirasek M. Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress// J. Eng. Mech., 2002. vol.128, no. 11. pp. 1119-1149. doi: 10.1061/(ASCE) 0733-9399(2002)128:11(1119).

9. Бейлин А. Б., Пулькина Л. С. Задача о продольных колебаниях стержня с динамическими граничными условиями// Вестн. СамГУ. Естественнонаучн. сер., 2014. №3(114). С. 9-19.

10. Корпусов М. О. Разрушение в неклассических волновых уравнениях. М.: URSS, 2010. 237 с.

Поступила в редакцию 10/II/2016; в окончательном варианте - 18/V/2016; принята в печать - 27/V/2016.

Vestn. Samar. Gos. Techn. Un-ta. Ser. Fiz.-mat. nauki

2016, vol. 20, no. 2, pp. 249-258 ISSN: 2310-7081 (online), 1991-8615 (print) doi: http://dx.doi.org/10.14498/vsgtu1474

MSC: 35L35, 35Q74

A PROBLEM ON LONGITUDINAL VIBRATION OF A BAR WITH ELASTIC FIXING

Samara State Technical University,

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation.

In this paper, we study longitudinal vibration in a thick short bar fixed by point forces and springs. For mathematical model we consider a boundary value problem with dynamical boundary conditions for a forth order partial differential equation. The choice of this model depends on a necessity to take into account the result of a transverse strain. It was shown by Rayleigh that neglect of a transverse strain leads to an error. This is confirmed by modern nonlocal theory of vibration. We prove existence of orthogonal with load eigenfunctions and derive representation of them. Established properties of eigenfunctions make possible using the separation of variables method and finding a unique solution of the problem.

Keywords: dynamic boundary conditions, longitudinal vibration, loaded orthogonality, Rayleigh"s model.

Alexander B. Beylin: http://orcid.org/0000-0002-4042-2860

1. Nerubai M. S., Shtrikov B. L., Kalashnikov V. V. Ul"trazvukovaia mekhanicheskaia obrabotka i sborka . Samara, Samara Book Publ., 1995, 191 pp. (In Russian)

2. Khmelev V. N., Barsukov R. V., Tsyganok S. N. Ul"trazvukovaia razmernaia obrabotka materialov . Barnaul, 1997, 120 pp. (In Russian)

3. Kumabe J. Vibration Cutting. Tokyo, Jikkyou Publishing Co., Ltd., 1979 (In Japanese).

4. Tikhonov A. N., Samarsky A. A. Uravneniia matematicheskoi fiziki . Moscow, Nauka, 2004, 798 pp. (In Russian)

5. Strutt J. W. The theory of sound, vol. 1. London, Macmillan and Co., 1945, xi+326 pp.

6. Rao J. S. Advanced Theory of Vibration: Nonlinear Vibration and One Dimensional Structures. New York, John Wiley & Sons, Inc., 1992, 431 pp.

Beylin A.B. A problem on longitudinal vibration of a bar with elastic fixing, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki , 2016, vol. 20, no. 2, pp. 249-258. doi: 10.14498/vsgtu1474. (In Russian) Author Details:

Alexander B. Beylin (Cand. Techn. Sci.; [email protected]), Associate Professor, Dept. of Automation Machine Tools and Tooling Systems.

7. Fedotov I. A., Polyanin A. D., Shatalov M. Yu. Theory of free and forced vibrations of a rigid rod based on the Rayleigh model, Dokl. Phys., 2007, vol.52, no. 11, pp. 607-612. doi: 10.1134/S1028335807110080.

8. Bazant Z., Jirasek M. Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress, J. Eng. Mech., 2002, vol.128, no. 11, pp. 1119-1149. doi: 10.1061/(ASCE) 0733-9399(2002)128:11(1119).

9. Beylin A. B., Pulkina L. S. A promlem on longitudinal vibrations of a rod with dynamic boundary conditions, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2014, no. 3(114), pp. 919 (In Russian).

10. Korpusov M. O. Razrushenie v neklassicheskikh volnovykh uravneniiakh . Moscow, URSS, 2010, 237 pp. (In Russian)

Received 10/II/2016;

received in revised form 18/V/2016;

МЕХАНИКА

УДК 531.01/534.112

ПРОДОЛЬНЫЕ КОЛЕБАНИЯ ПАКЕТА СТЕРЖНЕЙ

А.М. Павлов, А.Н. Темнов

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация e-mail: pavlov_arseniy[email protected]; [email protected]

В вопросах динамики жидкостных ракет важную роль играет проблема устойчивости движения ракеты при возникновении продольных упругих колебаний. Появление таких колебаний может привести к установлению автоколебаний, которые в случае неустойчивости ракеты в продольном направлении могут привести к ее быстрому разрушению. Сформулирована задача о продольных колебаниях ракеты пакетной схемы, в качестве расчетной модели использован пакет стержней. Принято, что жидкость в баках ракеты "заморожена", т.е. собственные движения жидкости не учтены. Сформулирован закон баланса полной энергии для рассматриваемой задачи и приведена ее операторная постановка. Приведен численный пример, для которого определены частоты, построены и проанализированы формы собственных колебаний.

Ключевые слова: продольные колебания, частота и форма колебаний, пакет стержней, закон баланса полной энергии, самосопряженный оператор, спектр колебаний, POGO.

SYSTEM OF RODS LONGITUDINAL VIBRATIONS А.М. Pavlov, АЛ. Temnov

Bauman Moscow State Technical University, Moscow, Russian Federation e-mail: [email protected]; [email protected]

In questions of dynamics of liquid fuel rockets the problem of motion stability for this rocket has an important role with the appearance of longitudinal elastic vibrations. An occurrence of such kind vibrations can evoke self-vibrations which may cause rapid destruction of the rocket in case of rocket instability within longitudinal direction. The problem on longitudinal vibrations of the liquid fuel rocket based on the packet scheme has been formulated using package rods as computational model. It is assumed that the liquid in the rocket tanks is "frozen", i.e. proper motions of the liquid are not included. For this problem energy conservation principle was formulated and its operator staging is given. There is a numerical example, for which the frequencies have been determined, forms of Eigen vibration were built and analyzed.

Keywords: longitudinal vibrations, eigen modes and frequencies, rods model, energy conservation principle, selfadjoint operator, vibration spectrum, POGO.

Введение. В настоящее время в России и за рубежом для вывода на требуемую орбиту полезного груза часто используют ракеты-носители (РН) пакетной компоновки с одинаковыми боковыми блоками, равномерно распределенными вокруг центрального блока.

Исследования колебаний пакетных конструкций наталкиваются на определенные трудности, связанные с динамическим воздействием боковых и центрального блоков . В случае симметрии компоновки РН сложное, пространственное взаимодействие блоков пакетной конструкции можно разделить на конечное число типов колебаний, одним из которых являются продольные колебания центрального и боковых блоков . Математическая модель продольных колебаний подобной конструкции в виде пакета тонкостенных стержней подробно рассмотрена в работе . Рис. 1. Схема централь- В настоящей статье приведены теоретиче-ного стержня ские и вычислительные результаты продоль-

ных колебаний пакета стержней, дополняющие исследование, выполненное А.А. Пожалостиным .

Постановка задачи. Рассмотрим другие продольные колебания пакета стержней, состоящего из центрального стержня длиной l0 и N боковых стержней одинаковой длины j = l, (l0 > lj), j = 1, 2,..., N, скрепленных в точке А (xA = l) (рис. 1) с центральными пружинными элементами жесткостью k.

Введем неподвижную систему отсчета ОХ и предположим, что жесткость стержней EFj (x), распределенная масса mj (x) и возмущение q (x,t) являются ограниченными функциями координаты x:

0

0 < mj < mj (x) < Mj; (1)

0

Пусть при продольных колебаниях в сечениях стержней с координатой x возникают смещения Uj (x, t), определяемые по уравнениям

mj (x) ^ - ¿(eFj (x) ^ = qj (x,t), j = 0,1, 2,..., N, (2)

граничными условиями отсутствия нормальных сил на концах стержней

3 =0, х = 0, ^ = 1, 2,

0, x = 0, x = l0;

условиями равенства нормальных сил, возникающих в стержнях,

EF-3 = F x = l

силам упругости пружинных элементов

FпPJ = к (щ (ха) - щ (¡,)); (4)

ЕУодХ (ха - 0) - EFодХ (ха + 0) = , х = ха;

условием равенства перемещений в точке ха центрального стержня

Щ (ха-о) = Щ (ха+о) и начальными условиями

Щ у (х, 0) - Щ (х) ; , _

щ (х, 0) = Щ (х),

где щ (х, 0) = "д^1 (х, 0).

Закон баланса полной энергии. Умножим уравнение (2) на щ (х,£), проинтегрируем по длине каждого стержня и сложим результаты, используя граничные условия (3) и условие согласования (4). В результате получим

({ 1 ^ [ (диЛ 2

тз (х) "БТ" (х+

dt | 2 ^ J 3 w V dt

N x „ ч 2 .. N „ i.

1 ^ Г „„ , f дп3\ , 1 ^ Гj

1 N /* i дпЛ 2 1 N fl j

EF3 dx +2^Уо Ы (x - -)(no - Uj)2 dx

= / ^ (х, £) их у (х,£) (х, (6)

где 8 (х - ¡у) - дельта-функция Дирака. В уравнении (6) первое слагаемое в фигурных скобках представляет собой кинетическую энергию Т (¿) системы, второе - потенциальную энергию Пр (£), обусловленную деформацией стержней, а третье - потенциальную энергию Пк (£) пружинных элементов, которая при наличии упругих деформаций стержней может быть записана в виде

Пк (*) = 2 £ / Су (¡у) 8 (х - ¡1) Е^ (¡у) (ддит (¡1)) 2 (х, Су = Еу.

Уравнение (6) показывает, что изменение полной энергии в единицу времени рассматриваемой механической системы равно мощности

внешнего воздействия. При отсутствии внешнего возмущения q (x,t) получаем закон сохранения полной энергии:

T (t) + Пр (t) + Пк (t) = T (0) + Пр (0) + Пк (0).

Операторная постановка. Закон баланса энергии показывает, что для любого момента времени t функции Uj (x, t) можно рассматривать как элементы гильбертова пространства L2j(; m3 (x)), определенные на длине ¡i скалярным произведением

(us,Vk)j = J mj (x) usVkdx 0

и соответствующей нормой.

Введем гильбертово пространство H, равное ортогональной сумме L2j, H = L20 Ф L21 Ф... Ф L2N, вектор-функцию U = (uo, Ui,..., uN)т и оператор A, действующий в пространстве H согласно соотношению

AU = diag (A00U0, A11U1,..., Annun).

mj (x) dx \ j dx "

операторы, определенные на

множестве Б (А33) С Н функций, удовлетворяющих условиям (3) и (4).

Исходная задача (1)-(5) вместе с начальными условиями запишется в виде

Аи = f (*), и (0) = и0, 17(0) = и1, (7)

где f (*) = (до (*) ,51 (*),..., Ям (¿))т.

Лемма. 1. Если выполнены первые два условия (1), то оператор А в эволюционной задаче (7) - неограниченный, самосопряженный, положительно определенный в пространстве Н оператор

(Аи,К)н = (и,АК)н, (Аи, и)я > с2 (и, и)я.

2. Оператор А порождает энергетическое пространство НА с нормой, равной удвоенному значению потенциальной энергии колебаний пакета стержней

3 \ ^ I з)2 = 2П > 0. (8)

IIUIIA = £/ EF^^J dx + k £ (uo - U)2 = 2П > 0.

< Оператор А неограничен в пространстве Н, поскольку неограничен каждый диагональный элемент А33. Самосопряженность и положительная определенность оператора А проверяются непосредственно:

(AU, v)h =/m (x) (-^| (EFo (x) ^j) Vo (x) dx+

+£ jm(x) (- jx) | (ef- (x) dndxa))v-(x) dx=... =

EFo (x) uo (x) vo (x) dx - EFo (x) U) (x) vo (x)

J EFo (x) uo (x) vo (x) dx - EFo (x) uo (x) ?o (x)

+ ^^ / EF- (x) u- (x) vo (x) dx - ^^ EF- (x) u- (x) v- (x)

J EFo (x) uo (x) v" (x) dx - EFo (xa - 0) uo (xa - 0) vo (xa) + 0

EFo (xa + 0) uo (xa + 0) vo (xa) - £ EF- (/-) u- (/-) v- (/-) +

J EF- (x) u- (x) v- (x) dx = J EFo (x) uo (x) vo (x) dx+ -=100

+ £ / EF.,- (x) u- (x) г?- (x) dx+ o

O (xa) -

£ EF- (/-) u- (/-) v?"- (/-) = EFo (x) uo (x) v?"o (x) dx+ -=10

+ £ / EF- (x) u- (x) v- (x) dx+ -=1 0 -

+ £ k (uo (xa) - u- (/-)) (vo (xa) - v- (/-)) = (U, A?)H

(AU, U)H = ... = I EF0 (x) u"2 (x) dx - EF0 (x) u0 (x) u0 (x)

J EF0 (x) u"0 (x) dx - EF0 (x) u0 (x) u0 (x)

+ ^^ / EFj (x) u"2 (x) dx - ^^ EFj (x) uj (x) u3 (x)

"J EF°(x) u"2 (x) dx 4EF0 (x) u"2 (x) dx+£ JEFj (x) u"2 (x) dx

У^ k (u0 (l) uj (l) - u2 (/)) + u0 (l) ^ k (u0 (l) - uj (l)) =

EF0 (x) u"2 (x) dx + / EF0 (x) u"0 (x) dx +

S / EFj (x) u"2 (x) dx + k ^ (u0 (l) - uj (l))2 > c2 (U, U)H

Из приведенных результатов следует, что энергетическая норма оператора A выражается формулой (8).

Разрешимость эволюционной задачи. Сформулируем следующую теорему.

Теорема 1. Пусть выполнены условия

U0 £ D (A1/2) , U0 £ H, f (t) £ C (; H),

тогда задача (7) имеет единственное слабое решение U (t) на отрезке , определяемое по формуле

U (t) = U0 cos (tA1/2) +U1 sin (tA1/2) +/sin ((t - s) A1/2) A-1/2f (s) ds.

5 отсутствии внешнего возмущения f (£) выполняется закон сохранения энергии

1 II A 1/2UИ2 = 1

1 II A1/2U 0|H.

< Эволюционная задача (7) - это стандартная задача Коши для дифференциального операторного уравнения гиперболического типа, для которого выполнены все условия теоремы о разрешимости .

Собственные колебания пакета стержней. Примем, что на стержневую систему не действует поле внешних сил: f (t) = 0. В этом случае движения стержней будем называть свободными. Свободные движения стержней, зависящие от времени t по закону exp (iwt), назовем собственными колебаниями. Приняв в уравнении (7) U (ж, t) = U (ж) eiWÍ, получим спектральную задачу для оператора A:

AU - AEU = 0, Л = ш2. (9)

Свойства оператора A позволяют сформулировать теорему о спектре и свойствах собственных функций .

Теорема 2. Спектральная задача (9) о собственных колебаниях пакета стержней имеет дискретный положительный спектр

0 < Ai < Л2 < ... < Ak < ..., Ak ^ то

и систему собственных функций {Uk (ж)}^=0, полную и ортогональную в пространствах H и HA, при этом выполнены следующие формулы ортогональности:

(Ufe, Us)H = £ m (xj UfejMSjdx = j=0 0

(Uk= £/Ц^) d*+

K («feo - Mfej) (uso -) = Afeífes. j=i

Исследование спектральной задачи в случае однородного пакета стержней. Представив функцию перемещений м- (ж,£) в виде м- (ж,£) = м- (ж) , после разделения переменных получим спектральные задачи для каждого стержня:

^Ои + Лм = 0, ^ = 0,1,2,..., N (10)

которые запишем в матричной форме

4 £ + Ли = 0,

А = -,-,-,...,-

\ т0 т1 т2 т«

и = (и0, и1, и2,..., и«)т.

Решение и анализ полученных результатов. Обозначим функции перемещения для центрального стержня на участке как и01 и на участке как и02 (ж). При этом для функции и02 начало координат перенесем в точку с координатой /. Для каждого стержня представим решение уравнения (10) в виде

Для нахождения неизвестных констант в (11) воспользуемся сформулированными выше граничными условиями. Из однородных граничных условий можно определить некоторые константы, а именно:

C02 = C12 = C22 = C32 = C42 = ... = CN 2 = 0.

В итоге остается найти N + 3 констант: C01, C03, C04, C11, C21, C31, C41,..., CN1. Для этого решим N + 3 уравнений относительно N + 3 неизвестных.

Запишем полученную систему в матричной форме: (A) {C} = {0} . Здесь {C} = {C01, C03, C04, C11, C21, C31, C41,..., Cn 1}т - вектор неизвестных; (A) - характеристическая матрица,

cos (Л1) EF0 Л sin (Л1) +

Л sin (Л (Zo - 1)) Л cos (Л (Zo - 1)) 0 00 0 \ -1 0 0000

0 y 00 00 0 000Y

а = к соэ ^ ^А-Л^ ; в = -к со8((.40-01Л)1/2 ^ ;

7 = (А4"-1 л) 1/2 ап ((А"1л) 1/2 + к сов ((А"1л) 1/2 ;

(~ \ 1/2 ~ Л= ^Л] ; А-- : 3 = 0.

Для нахождения нетривиального решения в качестве переменной примем константу С01 € М. Имеем два варианта: С01 = 0; С01 = 0.

Пусть С01 = 0, тогда С03 = С04 = 0. В этом случае нетривиальное решение может быть получено, если 7 = 0 из (12) при выполнении дополнительного условия

£ с-1 = 0, (13)

которое может быть получено из третьего уравнения системы (12). В итоге получаем простое частотное уравнение

ЕР (А"1 Л)1/2 вт ((А"1^1/2 П +

зз у \ V зз

K cos ^ (A-/a) 1/2 ^ = 0, j G ,

совпадающее с частотным уравнением для стержня упруго закрепленного на одном конце, который можно рассматривать как первую парциальную систему.

В этом случае все возможные комбинации движений боковых стержней, удовлетворяющих условию (13), можно условно разделить на группы, соответствующие различным комбинациям фаз (в рассматриваемом случае фаза определяется знаком С.д). Если принять боковые стержни идентичными, то имеем два варианта:

1) Сд = 0, тогда число таких комбинаций п для различных N можно вычислить по формуле п = N 2, где - функция деления без остатка;

2) какая-либо (или какие-либо) из констант С- равны 0, тогда число возможных комбинаций возрастает и может быть определено по формуле

£ [(N - m) div 2].

Пусть Coi = 0, тогда Cn = C21 = C31 = C41 = ... = CN1 = = C01 (-в/т), где в и y - комплексы, входящие в (12). Из системы (12) также имеем: C03 = C01 cos (Л/); C04=C03 tg (Л (/0 - /)) = C01 cos (A/) x x tg (Л (/0 - /)), т.е. все константы выражены через C01. Частотное уравнение принимает вид

EFo U-o1 Л tg A-1 Л) " (lo - l)) -

K2 cos | í a!-,1 Л

В качестве примера рассмотрим систему с четырьмя боковыми стержнями. Кроме описанного выше способа для этого примера можно записать частотное уравнение для всей системы, вычислив определитель матрицы А и приравняв его нулю. Приведем его вид

Y4 (Л sin (Л (/o - /)) cos (Л/) EFoЛ+

Л cos (Л (/o - /)) (EFoЛ sin (Л/) + 4в)) -

4авт3Л cos (Л(/0 - /)) = 0.

Графики трансцендентных частотных уравнений для рассмотренных выше случаев представлены на рис. 2. В качестве исходных данных были приняты следующие: EF = 2 109 Н; EF0 = 2,2 109 Н; k = 7 107 Н/м; m = 5900 кг/м; mo = 6000 кг/м; / = 23; /о = 33 м. Значения первых трех частот колебаний рассматриваемой схемы приведены ниже:

n.....................................

и, рад/с..............................

1 2 3 20,08 31,53 63,50

Рис. 2. Графики трансцендентных частотных уравнений для Coi = 0 (i) и Coi = 0 (2)

Приведем формы колебаний, соответствующие полученным решениям (в общем случае формы колебаний не нормированы). Формы колебаний, соответствующие первой, второй, третьей, четвертой, 13 и 14 частотам, приведены на рис. 3. При первой частоте колебаний боковые стержни колеблются с одинаковой формой, но попарно в противофазе

Рис.3. Формы колебаний боковых (1) и центральных (2) стержней, соответствующие первой V = 3,20 Гц (а), второй V = 5,02 Гц (б), третьей V = 10,11 Гц (в), четвертой V = 13,60 Гц (г), 13-й V = 45,90 Гц (д) и 14-й V = 50,88 Гц (е) частотам

(рис. 3, а), при второй - центральный стержень совершает колебания, а боковые колеблются по одинаковой форме в фазе (рис. 3, б). Следует отметить, что первая и вторая частоты колебаний рассматриваемой стержневой системы соответствуют колебаниям системы, состоящей из твердых тел.

При колебании системы с третьей собственной частотой первый раз появляются узлы (рис.3,в). Третья и последующие частоты (рис.3,г) соответствуют уже упругим колебаниям системы. С возрастанием частоты колебаний, связанной с уменьшением влияния упругих элементов, частоты и формы колебаний стремятся к парциальным (рис.3,д, е).

Кривые функций, точки пересечения которых с осью абсцисс являются решениями трансцендентных уравнений, представлены на рис. 4. Согласно рисунку, собственные частоты колебаний системы расположены вблизи парциальных частот. Как было отмечено выше, при увеличении частоты сближение собственных частот с парциальными усиливается. В результате частоты, при которых колеблется вся система, условно разделяются на две группы: близкие к парциальным частотам бокового стержня и частоты, близкие к парциальным частотам центрального стержня.

Выводы. Рассмотрена задача о продольных колебаниях пакета стержней. Описаны свойства поставленной краевой задачи и спектра ее собственных значений. Предложено решение спектральной задачи для произвольного числа однородных боковых стержней. Для численного примера найдены значения первых частот колебаний и построены соответствующие им формы. Также были выявлены некоторые характерные свойства построенных форм колебаний.

Рис. 4. Кривые функций, точки пересечения которых с осью абсцисс являются решениями трансцендентных уравнений, для СоХ = 0 (1), Сох = 0 (2) совпадают с первой парциальной системой (боковой стержень, закрепленный на упругом элементе в точке х = I) и второй парциальной системы (5) (центральный стержень, закрепленный на четырех упругих элементах в точке А)

ЛИТЕРАТУРА

1. Колесников К.С. Динамика ракет. М.: Машиностроение, 2003. 520 с.

2. Баллистические ракеты и ракеты-носители / О.М. Алифанов, А.Н. Андреев, В.Н. Гущин и др. М.: Дрофа, 2004. 511 с.

3. Рабинович Б.И. Введение в динамику ракет-носителей космических аппаратов. М.: Машиностроение, 1974. 396 с.

4. Parameter study on POGO stability of liquid rockets / Z. Zhao, G. Ren, Z. Yu, B. Tang, Q. Zhang // J. of Spacecraft and Rockets. 2011. Vol. 48. Is. 3. P. 537-541.

5. Балакирев Ю.Г. Методы анализа продольных колебаний ракет-носителей с жидкостным двигателем // Космонавтика и ракетостроение. 1995. № 5. С. 50-58.

6. Балакирев Ю.Г. Особенности математической модели жидкостной ракеты пакетной компоновки как объекта управлении // Избранные проблемы прочности современного машиностроения. 2008. С. 43-55.

7. Докучаев Л.В. Совершенствование методов исследований динамики ракеты-носителя пакетной конструкции с учетом их симметрии // Космонавтика и ракетостроение. 2005. № 2. С. 112-121.

8. Пожалостин А.А. Разработка приближенных аналитических методов расчета собственных и вынужденных колебаний упругих оболочек с жидкостью: дис. ... д-ра техн. наук. М., 2005. 220 с.

9. Крейн С.Г. Линейные дифференциальные уравнения в банаховых пространствах. М.: Наука, 1967. 464 с.

10. Копачевский И.Д. Операторные методы математической физики. Симферополь: ООО "Форма", 2008. 140 с.

Kolesnikov K.S. Dinamika raket . Moscow, Mashinostroenie Publ., 2003. 520 p.

Alifanov O.N., Andreev A.N., Gushchin V.N., eds. Ballisticheskie rakety i rakety-nositeli . Moscow, Drofa Publ., 2003. 511 p.

Rabinovich B.I. Vvedenie v dinamiku raket-nositeley kosmicheskikh apparatov . Moscow, Mashinostroenie Publ., 1974. 396 p.

Zhao Z., Ren G., Yu Z., Tang B., Zhang Q. Parameter study on POGO stability of liquid fuel rocket. J. Spacecraft and Rockets, 2011, vol. 48, iss. 3, pp. 537-541.

Balakirev Yu.G. Methods of analysis of longitudinal vibrations of launch vehicles with liquid propellant engine. Kosm. i raketostr. , 1995, no. 5, pp. 50-58 (in Russ.).

Balakirev Yu.G. Osobennosti matematicheskoy modeli zhidkostnoy rakety paketnoy komponovki kak ob"ekta upravlenii . Sb. "Izbrannye problemy prochnosti sovremennogo mashinostroeniya" . Moscow, Fizmatlit Publ., 2008. 204 p. (cited pp. 4355).

Dokuchaev L.V. Improvement of methods for studying the dynamics of clustered launch vehicle considering their symmetry. Kosm. i raketostr. , 2005, no. 2, pp. 112-121 (in Russ.).

Pozhalostin A.A. Razrabotka priblizhennykh analiticheskikh metodov rascheta sobstvennykh i vynuzhdennykh kolebaniy uprugikh obolochek s zhidkost"yu. Diss. doct. tekhn. nauk .

Kreyn S.G. Lineynye differentsial"nye uravneniya v Banakhovykh prostranstvakh . Moscow, Nauka Publ., 1967. 464 p. Kopachevskiy I.D. Operatornye metody matematicheskoy fiziki . Simferopol", Forma Publ., 2008. 140 p.

Статья поступила в редакцию 28.04.2014

Павлов Арсений Михайлович - студент кафедры "Космические аппараты и ракеты-носители" МГТУ им. Н.Э. Баумана. Специализируется в области ракетно-космической технологии.

МГТУ им. Н.Э. Баумаш, Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5.

Pavlov A.M. - student of "Spacecrafts and Launch Vehicles" department of the Bauman Moscow State Technical University. Specialist in the field of rocket-and-space technology. Bauman Moscow State Technical University, 2-ya Baumanskaya ul. 5, Moscow, 105005 Russian Federation.

Темнов Александр Николаевич - канд. физ.-мат. наук, доцент кафедры "Космические аппараты и ракеты-носители" МГТУ им. Н.Э. Баумана. Автор более 20 научных работ в области механики жидкости и газа и ракетно-космической технологии. МГТУ им. Н.Э. Баумаш, Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5.

Temnov A.N. - Cand. Sci. (Phys.-Math.), assoc. professor of "Spacecrafts and Launch Vehicles" department of the Bauman Moscow State Technical University. Author of more than 20 publications in the field of fluid and gas mechanics and rocket-and-space technology.

Bauman Moscow State Technical University, 2-ya Baumanskaya ul. 5, Moscow, 105005 Russian Federation.

Под стержнем будем понимать цилиндр П=0х[О, /], когда diamD. Здесь D - область на координатной плоскости Ох 2 х 3 (рис. 62). Материал стержня однороден и изотропен, а ось Ох, проходит через центр тяжести сечения D. Поле внешних массовых сил f(r, I) =/(Х|, /)е, где е, - орт оси Ох,. Пусть внешние поверхностные силы на боковой поверхности цилиндра равны нулю, т.е. Ра = 0 на dD х

Тогда из (4.8) следует при 1=0 равенства

Собственные формы Х к (j) удобно нормировать, используя для этого норму пространства /^(), которому принадлежит функция v(s, I), так как в каждый момент времени существует и ограничен функционал кинетической энергии

где S - площадь области D. Имеем

X*(s) = Jj- sin^-л в пространстве скоростей Я 0 = ji)(s, /): v(s, t)e


В результате получим ортонормированный базис |л г *(^)| ,

где Ь к „ - символ Кронекера: Функции X k *(s), к= 1,2,суть нормальные формы собственных колебаний, а ю*, к= 1, 2, ..., - собственные частоты колебаний системы с бесконечным числом степеней свободы.

В заключение заметим, что функция u(s, /) принадлежит конфигурационному пространству системы Я, = {v(s, t): v(s, t ) е е ^(), и(0,1) = о(1 , /) = 0}, где И^"ОО, / ]) - пространство Соболева функций, суммируемых вместе с квадратами первых производных на отрезке . Пространство Я, есть область определения функционала потенциальной энергии упругих деформаций

и содержит обобщенные решения рассматриваемой задачи.

Продольные волны

Определение 1

Волна, в которой колебания происходят в направлении ее распространения. Примером продольной волны может служить звуковая волна.

Рисунок 1. Продольная волна

Механические продольные волны также называют компрессионными волнами или волнами сжатия, так как они производят сжатие при движении через среду. Поперечные механические волны также называют "Т-волны" или "волны сдвига".

Продольные волны включают в себя акустические волны (скорость частиц, распространяющихся в упругой среде) и сейсмические Р-волны (созданные в результате землетрясений и взрывов). В продольных волнах, смещение среды параллельно направлению распространения волны.

Звуковые волны

В случае продольных гармонических звуковых волн , частота и длина волны может быть описана формулой:

$y_0-$ амплитуда колебаний;\textit{}

$\omega -$ угловая частота волны;

$c-$ скорость волны.

Обычная частота $\left({\rm f}\right)$волны задается

Скорость звука распространения зависит от типа, температуры и состава среды, через которую он распространяется.

В упругой среде, гармоническая продольная волна проходит в положительном направлении вдоль оси.

Поперечные волны

Определение 2

Поперечная волна - волна, в которой направление молекул колебаний среды перпендикулярно к направлению распространения. Примером поперечных волн служит электромагнитная волна.

Рисунок 2. Продольная и поперечная волны

Рябь в пруду и волны на струне легко представить в виде поперечных волн.

Рисунок 3. Световые волны являются примером поперечной волны

Поперечные волны являются волнами, которые колеблются перпендикулярно к направлению распространения. Есть два независимых направления, в которых могут возникать волновые движения.

Определение 3

Двумерные поперечные волны демонстрируют явление, называемое поляризацией.

Электромагнитные волны ведут себя таким же образом, хотя это немного сложнее увидеть. Электромагнитные волны также являются двухмерными поперечными волнами.

Пример 1

Докажите, что уравнение плоской незатухающей волны ${\rm y=Acos}\left(\omega t-\frac{2\pi }{\lambda }\right)x+{\varphi }_0$ для волны, которая представлена на рисунке, можно записать в виде ${\rm y=Asin}\left(\frac{2\pi }{\lambda }\right)x$. Убедитесь в этом, подставив значения координаты$\ \ x$, которые раны $\frac{\lambda}{4}$; $\frac{\lambda}{2}$; $\frac{0,75}{\lambda}$.

Рисунок 4.

Уравнение $y\left(x\right)$ для плоской незатухающей волны не зависит от $t$, значит, момент времени $t$ можно выбрать произвольным. Выберем момент времени $t$ таким, что

\[\omega t=\frac{3}{2}\pi -{\varphi }_0\] \

Подставим это значение в уравнение:

\ \[=Acos\left(2\pi -\frac{\pi }{2}-\left(\frac{2\pi }{\lambda }\right)x\right)=Acos\left(2\pi -\left(\left(\frac{2\pi }{\lambda }\right)x+\frac{\pi }{2}\right)\right)=\] \[=Acos\left(\left(\frac{2\pi }{\lambda }\right)x+\frac{\pi }{2}\right)=Asin\left(\frac{2\pi }{\lambda }\right)x\] \ \ \[{\mathbf x}{\mathbf =}\frac{{\mathbf 3}}{{\mathbf 4}}{\mathbf \lambda }{\mathbf =}{\mathbf 18},{\mathbf 75}{\mathbf \ см,\ \ \ }{\mathbf y}{\mathbf =\ }{\mathbf 0},{\mathbf 2}{\cdot}{\mathbf sin}\frac{{\mathbf 3}}{{\mathbf 2}}{\mathbf \pi }{\mathbf =-}{\mathbf 0},{\mathbf 2}\]

Ответ: $Asin\left(\frac{2\pi }{\lambda }\right)x$


Top