От чего зависит радиус радуги. Старт в науке. Видимые изменения радуги


Общая физическая картина радуги была уже четко описана Марком Антонием де Доминисом (1611). На основании опытных наблюдений он пришел к заключению, что радуга получается в результате отражения от внутренней поверхности капли дождя и двукратного преломления - при входе в каплю и при выходе из нее.

Рене Декарт
дал более полное объяснение радуги в своем труде "Метеоры" в главе "О радуге" (1635)

Исаак Ньютон в трактате "Оптика или Трактат об отражениях, преломлениях, изгибаниях и цветах света" дополнил теорию радуги в отношении цветов радуги и объяснил механизм образования вторичной радуги.

Полная теория радуги с учетом дифракции света, которая зависит от соотношения длины волны света и размера капли, была построена лишь в XIX веке Дж.Б. Эри (1836) и Дж.М. Пернтером (1897).

Систему цветов распавшегося солнечного луча Ньютон назвал спектром - от лат. spectrum - представление, видение, призрак.

В радуге Ньютон выделял 7 цветов .
Многоцветный спектр радуги непрерывен!)

Почему цвета радуги располагаются в строгой последовательности ?
Каждый цветной луч имеет свой собственный угол излома. У фиолетового, занимающего нижнее положение в спектре, этот угол самый малый.

Каждый из нас видит свою собственную «персональную» радугу .
Когда вы смотрите на радугу, то видите свет преломленный от одних капель дождя, а человек, стоящий рядом с вами, смотрит на ту же радугу и видит свет, отраженный от других капель дождя.

Центр окружности, описываемой радугой , лежит на прямой, проходящей через наблюдателя и Солнце, причем Солнце всегда за спиной наблюдателя.

Каков радиус радуги?
Радуга - это оптический эффект, получаемый в результате преломления солнечных лучей в каплях атмосферной влаги.
Эти капли могут находиться от нас на разном расстоянии. Подсчитано, что высота радуги составляет примерно 0.9 расстояния от глаз наблюдателя. Так как радуга нам видится полукругом, эту величину можно считать радиусом воображаемой окружности, в которую радуга могла быть замкнута.

Есть ли начало и конец у радуги?
В идеальных условиях в полете на самолете или с высокой горы можно увидеть радугу как замкнутую кривую, которая окружает точку, диаметрально противоположную Солнцу.

Когда Солнце поднимается выше 42 градусов над горизонтом , радуга с поверхности Земли не видна.

Яркость радуги зависит от величины дождевых капель. Если они крупные (диаметром 1-2 мм) - радуга очень яркая.

Двойная радуга
объясняется тем, что солнечные лучи дважды отражаются в каплях, находящихся выше капель, формирующих обычную радугу. При этом верхняя радуга всегда менее яркая, чем основная, а цвета в ней расставлены в обратном порядке.
Реже встречается тройная и даже радуга из четырех дуг!
При этом дополнительные радуги располагаются только над центральной частью основных радуг и исчезают при переходе последних в вертикальное положение.

Расстояние между двумя радугами называется темная полоса Александра . Он назван в честь древнегреческого философа Александра Афродисийского, первым описавшим это явление в 200г. н.э.

Ночная радуга - Лунная радуга
Лунная радуга является редким явлением по преломлению лунного света. Мы видим эту радугу как белую, хотя в ней присутствуют все цвета.

Огненная радуга - одна из разновидностей "галО" - оптического эффекта в виде светящегося кольца вокруг солнца, который преимущественно появляется в области перистых облаков: мелкие льдинки отражают падающий свет и "зажигает" облака, окрашивая их в различные цвета.

Радуга – одно из немногих природных явлений, которое человек научился воспроизводить.
Искусственные радуги можно увидеть рядом с водопадами и фонтанами. Они появляются на фоне мельчайших капелек, разбрызгиваемых установкой.

Люди давно задавадись этим вопросом. В некоторых мифах Африки радуга - это змея, которая охватывает землю кольцом. Но теперь - то мы знаем, что радуга - это оптическое явление - результат преломения лучей света в капельках воды во время дождя. Но почему мы видим радугу именно в форме дуги, а не, например, в форме вертикальной цветной полосы?

Форма радуги определяется формой капелек воды, в которых преломляется солнечный свет. А капельки воды - более или менее сферические (круглые. Проходя через каплю и преломляясь в ней, пучок белых солнечных лучей преобразуется в серию цветных воронок, вставленных одна в другую, обращенных к наблюдателю. Наружная воронка красная, в нее вставлена оранжевая, желтая, далее идет зеленая и т. д., кончая внутренней фиолетовой. Таким образом, каждая отдельная капля образует целую радугу.
Конечно, радуга от одной капли слабая, и в природе ее невозможно увидеть отдельно, так как капель в завесе дождя много. Радуга, которую мы видим на небосводе, образована мириадами капель. Каждая капля создает серию вложенных одна в другую цветных воронок (или конусов. Но от отдельной капли в радугу попадает только один цветной луч. Глаз наблюдателя является общей точкой, в которой пересекаются цветные лучи от множества капель. Например, все красные лучи, вышедшие из различных капель, но под одним и тем же углом и попавшие в глаз наблюдателю, образуют красную дугу радуги. Также образуют дуги все оранжевые и другие цветные лучи. Поэтому радуга круглая.



Мы привыкли наблюдать радугу как дугу. На самом деле эта дуга лишь частью разноцветной окружности является. Целиком же это природное явление можно наблюдать лишь на большой высоте, например, с борта самолета.

Когда на землю падают последние дождевые капли, и на небе появляется радуга, ты, глядя на нее, задумываешься: а почему это происходит? Откуда берется на небосводе красивая дуга из разноцветных полос? Ответить на этот вопрос поможет наука физика, которая уже не один раз давала тебе ответы на многие сложные вопросы.

Радуга – необыкновенное явление природы. И хотя мы видим ее довольно часто, каждый раз радуемся ее появлению и красоте. Радуга появляется сразу, как только туча начинает уходить, и ее место в вышине занимает солнце. Получается, что некоторое время дождь виден людям словно «со стороны». Лучи солнца освещают дождевую тучу и, проходя сквозь капли дождя, меняют свой цвет. Дело в том, что солнечные лучи вовсе не белые и одинаковые, как кажется нам. Все они имеют разную длину, а каждой длине соответствует своя «окраска» . Потому радуга и видится нам такой разноцветной.

Но цвет радуги бывает ярким, а бывает еле заметным. И зависит это от размера дождевых капель. Если капли крупные, цвета радуги будут яркими. Если мелкие – небесная дуга будет видна плохо. В прошлом люди не могли объяснить появление радуги. И трудно было найти человека, который бы оставался к ней равнодушным. Потому существует так много легенд и поверий, связанных с радугой. Древние славяне, глядя на радугу, предсказывали погоду. Если радуга была низкой и широкой, народ ожидал ненастье. А высокая и узкая – обещала хорошую погоду.

В Англии считается хорошей приметой увидеть радугу и сразу загадать желание. А в Ирландии и сегодня верят, что в том месте, где радуга утыкается в землю, находится клад с золотом. Ты, конечно, достаточно разумный человек, и не веришь в золотые клады. И понимаешь, что попасть туда, где радуга соприкасается с землей, никак нельзя.

А интересно тебе, почему мы видим только часть радуги? Давай поговорим об этом. Ты, наверное, уже заметил, что нельзя наблюдать одновременно и солнце, и радугу. Ведь радуга – это отражение солнечных лучей. С земли видна только часть небесной дуги. Но чем выше будет подниматься человек, например, на гору, тем больше радуга будет похожа на круг.А из иллюминатора самолета ты когда-нибудь сможешь увидеть круглую радугу!

Почему радуга полукруглая? Люди давно задавадись этим вопросом. В некоторых мифах Африки радуга - это змея, которая охватывает Землю кольцом. Но теперь-то мы знаем, что радуга - это - результат преломения лучей света в капельках воды во время дождя. Но почему мы видим радугу именно в форме дуги, а не, например, в форме вертикальной цветной полосы?

Два человека, стоящие рядом, видят каждый свою радугу! Потому что в каждый момент радуга образована преломлением солнечных лучей в новых и новых каплях. Капли дождя падают. Место упавшей капли занимает другая и успевает послать свои цветные лучи в радугу, за ней следующая и так далее.

Вид радуги - ширина дуг, наличие, расположение и яркость отдельных цветовых тонов, положение дополнительных дуг - очень сильно зависят от размера капель дождя. Чем крупнее капли дождя, тем уже и ярче получается радуга. Характерным для крупных капель является наличие насыщенного красного цвета в основной радуге. Многочисленные дополнительные дуги также имеют яркие тона и непосредственно, без промежутков, примыкают к основным радугам. Чем капли мельче, тем радуга становится более широкой и блеклой с оранжевым или желтым краем. Дополнительные дуги дальше отстоят и друг от друга и от основных радуг. Таким образом, по виду радуги можно приближенно оценить размеры капель дождя, образовавших эту радугу.

Вид радуги зависит и от формы капель. При падении в воздухе крупные капли сплющиваются, теряют свою сферичность. Чем сильнее сплющивание капель, тем меньше радиус образуемой ими радуги.

Небесная радуга – это красивое и одновременно сложное физическое явление, которое можно наблюдать после дождя или во время тумана, если светит солнце. С радугой связано множество древних поверий и мифов у разных народов, а на Руси в старину по ней предсказывали погоду. Узкая и высокая радуга предвещала хорошую погоду, а широкая и низкая – ненастье.

Радуга представляет собой метеорологическое явление, которое возникает в небе. Это огромная дуга, состоящая из разных цветов. Возникновению радуги способствует высокое содержание влаги в воздухе, что обычно происходит после дождя или тумана. Разноцветная дуга появляется благодаря преломлению солнечного света в каплях воды, которые содержатся в атмосфере в виде пара. Капли по-разному преломляют свет, это зависит от длины световой волны. Например, самые длинные волны у красного цвета, поэтому этот цвет венчает цветовой спектр радуги, он принадлежит самой широкой дуге. Затем красный цвет по спектру плавно переходит в оранжевый, далее в желтый и т.д.Самый слабый по сопротивляемости отклонению при преломлении в воде – фиолетовый цвет, его волны самые короткие, поэтому наблюдателю видится, что этот цвет принадлежит самой короткой дуге радуги – внутренней. Метод разложения белого солнечного света в цветовой спектр называется «дисперсией». При дисперсии показатель преломления света зависит от длины световой волны.В оптике явление радуги называется «каустикой». Каустика – это световая кривая линия разнообразной формы, в данном случае – полукруг или дуга. Разноцветные лучи, из которых состоит радуга, идут параллельно другу другу, не сходясь, поэтому можно наблюдать цветовой переход, присущий ей, на всем протяжении радуги.С детства всем знакомы стишки и поговорки, которые помогают запомнить цвета радуги. Например, поговорку «каждый охотник желает знать, где сидит фазан» знает каждый школьник. Однако на самом деле, цветовой спектр радуги состоит не из семи цветов, их гораздо больше. Основные цвета переходят друг в друга через большое количество оттенков и промежуточных цветов.Следует добавить, что явление радуги человек может наблюдать только по ходу солнечного света. Одновременно видеть радугу и светило невозможно, солнце всегда остается позади. При этом, чем выше находится наблюдатель (на возвышении или в самолете), тем больше видимая форма радуги приближается к окружности.

Почему радуга круглая и купол неба. ПОЧЕМУ РАДУГА ИМЕЕТ ФОРМУ ДУГИ?

Почему радуга полукруглая? Люди давно задавадись этим вопросом. В некоторых мифах Африки радуга - это змея, которая охватывает Землю кольцом. Но теперь-то мы знаем, что радуга - это оптическое явление - результат преломения лучей света в капельках воды во время дождя. Но почему мы видим радугу именно в форме дуги, а не, например, в форме вертикальной цветной полосы?

Форма радуги определяется формой капелек воды, в которых преломляется солнечный свет. А капельки воды - более или менее сферические (круглые). Проходя через каплю и преломляясь в ней, пучок белых солнечных лучей преобразуется в серию цветных воронок, вставленных одна в другую, обращенных к наблюдателю. Наружная воронка красная, в нее вставлена оранжевая, желтая, далее идет зеленая и т. д., кончая внутренней фиолетовой. Таким образом, каждая отдельная капля образует целую радугу.

Конечно, радуга от одной капли слабая, и в природе ее невозможно увидеть отдельно, так как капель в завесе дождя много. Радуга, которую мы видим на небосводе, образована мириадами капель. Каждая капля создает серию вложенных одна в другую цветных воронок (или конусов). Но от отдельной капли в радугу попадает только один цветной луч. Глаз наблюдателя является общей точкой, в которой пересекаются цветные лучи от множества капель. Например, все красные лучи, вышедшие из различных капель, но под одним и тем же углом и попавшие в глаз наблюдателю, образуют красную дугу радуги. Также образуют дуги все оранжевые и другие цветные лучи. Поэтому радуга круглая.

Два человека, стоящие рядом, видят каждый свою радугу! Потому что в каждый момент радуга образована преломлением солнечных лучей в новых и новых каплях. Капли дождя падают. Место упавшей капли занимает другая и успевает послать свои цветные лучи в радугу, за ней следующая и так далее.

Вид радуги - ширина дуг, наличие, расположение и яркость отдельных цветовых тонов, положение дополнительных дуг - очень сильно зависят от размера капель дождя. Чем крупнее капли дождя, тем уже и ярче получается радуга. Характерным для крупных капель является наличие насыщенного красного цвета в основной радуге. Многочисленные дополнительные дуги также имеют яркие тона и непосредственно, без промежутков, примыкают к основным радугам. Чем капли мельче, тем радуга становится более широкой и блеклой с оранжевым или желтым краем. Дополнительные дуги дальше отстоят и друг от друга и от основных радуг. Таким образом, по виду радуги можно приближенно оценить размеры капель дождя, образовавших эту радугу.

Вид радуги зависит и от формы капель. При падении в воздухе крупные капли сплющиваются, теряют свою сферичность. Чем сильнее сплющивание капель, тем меньше радиус образуемой ими радуги.

Мы привыкли наблюдать радугу как дугу. На самом деле эта дуга является лишь частью разноцветной окружности. Целиком же это природное явление можно наблюдать лишь на большой высоте, например, с борта самолета.

Есть такая группа оптических явлений, которая назвается гало. Они вызваны преломлением световых лучей крошечными кристалликами льда в перистых облаках и туманах. Чаще всего гало образуются вокруг Солнца или Луны. Вот пример такого явления - сферическая радуга вокруг Солнца:

Радуга – это атмосферное явление. Она появляется в небе до или после дождика, ее можно увидеть около водопада или над брызгами у фонтана. Выглядит она по-разному - бывает дугой, иногда в виде окружности или брызг. Чтобы после дождя появилась радуга, необходим солнечный свет.

Представьте себе, что радуга – это один солнечный луч. Обычно солнечные лучи невидимы, так как рассеиваются воздухом. Дневной солнечный свет часто называется белым. На самом деле, ощущение белого света вызвано путем смешивания таких цветов, как красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Это сочетание цветов называется солнечным спектром, их совокупность и дает белый цвет.
Зеленая листва, голубое небо, яркие краски природы - это все преломление солнечных лучей, которые проходя через тонкий слой атмосферы отражают составляющие части белого цвета.
Понятие о спектральном составе белого цвета ввел Исаак Ньютон. Он провел опыт, когда луч от источника света был пропущен через узкую щель, за которой помещена линза. Из нее пучок света перенаправлялся на призму, где преломлялся и распадался на составляющие.
Вспомните, что призма - это многогранник с основанием, стороны которого образуют объемную фигуру. Капля воды – это настоящая призма. Попадая сквозь нее, луч солнца преломляется и превращается в радугу.
Расщепляется солнечный свет по-разному, потому что каждая волна спектра имеет свою длину. Отличительной особенностью является и то, что два рядом стоящих наблюдателя увидят каждый свою радугу.
Эффект произойдет из-за того, что капли не могут быть одинаковыми, а расположение цветов, их яркость, ширина дуг радуги напрямую зависят от размера и формы капель.
Если вы хотите увидеть радугу во всей красе, необходимо, чтобы солнце светило вам в спину. Радуга будет ярче и насыщенней, если свет преломляется через крупные капли, если они мелкие, дуги будут шире, но их цвет менее ярким. Бывает так, что при падении капли дождя становятся сплющенными, в этом случае радиус радуги будет маленьким. Если капли при падении вытянутся, то, радуга будет высокой, но ее цвета бледные.

Радуга – одно из самых изумительных явлений природы. Над сущностью этого явления люди задумывались издавна. Радуга является спутницей дождя. Время ее появления зависит от перемещения дающего ливневые осадки облака. Радуга может возникнуть как перед дождем, так и в процессе выпадения осадков или по окончании процесса.

Что такое радуга?
Обычно радуга представляет собой цветную дугу с угловым радиусом 42°. Дуга просматривается на фоне дождевой завесы или полос падения дождя, не всегда достигающих поверхности земли. Радуга наблюдается в той стороне небосвода, которая противоположна солнцу, при этом солнце не закрывается облаками. Чаще всего такие условия создаются летом, во время так называемых «грибных» дождей. Центром радуги является антисолярная точка – эта точка диаметрально противоположна Солнцу. В радуге различаются семь цветов, кроме того, радугу можно увидеть около фонтана или водопада, на фоне завесы капель поливальной установки.

Откуда же берется исходящий от радуги удивительный красочный свет? Источником радуги является разложенный на компоненты солнечный свет. Этот свет перемещается по небосводу таким образом, что видится исходящим от той части небосвода, которая противоположна Солнцу. Основные особенности радуги правильно объясняет созданная более 300 лет назад теория Декарта-Ньютона.

Предмет, способный разложить луч света на составляющие, называется «призмой». Если говорить о радуге, то роль «призмы» выполняют капли дождя. Радуга – это большой изогнутый спектр или образовавшаяся в результате разложения проходящего через дождевые капли луча света полоса цветных линий. Цвета идут в следующем порядке, если считать от внешнего радиуса к внутреннему (довольно просто запомнить данный спектр, выучив простую фразу-акростих: «Каждый охотник желает знать, где сидит фазан», здесь первая буква каждого слова соответствует первой букве цвета):

Каждый - Красный;

Охотник - Оранжевый;

Желает - Жёлтый;

Знать - Зелёный;

Где - Голубой;

Сидит - Синий;

Фазан - Фиолетовый.

Радугу можно увидеть в то время, когда параллельно с ливнем светит Солнце. Чтобы ее увидеть, нужно находиться строго между Солнцем и дождем. При этом Солнце должно находиться сзади, а дождь – впереди.

Быстрый ответ: всего в радуге 7 цветов.

Что такое радуга? Это оптическое явление, которое можно наблюдать при освещении Солнцем (а в некоторых случаях и Луной) большого количества водяных капель (речь идет о тумане или воде). Радуга представляет из себя окружность в виде дуги, имеющая семь цветов спектра: синий, фиолетовый, зеленый, голубой, оранжевый, желтый и красный. Стоит заметить, что Солнце в момент наблюдения радуги всегда находится за спиной наблюдателя, поэтому видеть их оба одновременно нельзя, разве что при помощи специального оборудования.

Откуда берется это оптическое явление? Оно возникает в результате преломления света в капельках воды, которые парят в атмосфере. Капельки имеют свойство по-разному отклонять свет различных цветов. Белый цвет разлагается в спектр, в результате чего происходит дисперсия света - преломление вещества, зависящее от частоты или фазовой скорости света. Грубо говоря, солнечный цвет проходит через мельчайшие капельки воды, преломляется и виден человеческому глазу как сразу несколько цветов.

Существуют два вида радуги - первичная и вторичная. В первом случае свет внутри капли отражается лишь один раз, оттенки в этом случае достаточно яркие. Во втором случае свет отражается два раза и цвета, которые принимают наши глаза, уже не столь яркие. Бывает также радуга и третьего, и даже четвертого порядка, однако никто на протяжении вот уже нескольких веков воочию не наблюдал это чудо природы.

Стоит отметить, что цвета в радуге расположены в той последовательности, которая соответствует спектру видимого света. Для их запоминания в некоторых странах даже придумали этакие стишки и фразы. Россия исключением не стала. В нашей стране используются сразу несколько фраз, вот они:

  • Как однажды Жак-звонарь головой сломал фонарь.
  • Каждый охотник желает знать, где сидит фазан.
  • Крот овце, жирафу, зайке голубые сшил фуфайки.
  • Каждый оформитель желает знать, где скачать фотошоп.
  • Кем ощущается жестокий звон гонга сопротивления фатальности?
  • Кварк окружает жаркий занавес глюонов, создающих флюиды.

Нетрудно догадаться, что начальная буква каждого слова обознчает начальную букву цвета:

  • Как - красный.
  • Однажды - оранжевый.
  • Жак - желтый.
  • Звонарь - зеленый.
  • Головой - голубой.
  • Сломал - синий.
  • Фонарь - фиолетовый.

Радуга - это удивительное и невероятно красивое метеорологическое и оптическое природное явление. Его можно наблюдать в основном после дождя, когда выглянет солнце. Оно-то и является причиной того, что мы можем увидеть на небе это чудесное явление, а также различить цвета радуги, по порядку расположенные.

Причины возникновения

Радуга появляется из-за того, что свет, исходящий от солнца либо от другого источника, преломляется в капельках воды, медленно падающих на землю. С их помощью белый свет "ломается", образовывая цвета радуги. По порядку они расположены по причине различных степеней отклонения света (к примеру, красный свет отклоняется на меньшее количество градусов, нежели фиолетовый). Причём радуга может появляться также и благодаря лунному свету, но нашему глазу очень сложно различить её при слабом освещении. При образовании окружности, которую формирует "небесный мост", центр всегда находится на прямой, проходящей через Солнце либо Луну. Для тех, кто наблюдает это явление с земли, этот "мост" представляется в виде дуги. Но чем выше точка обзора, тем радуга видится полнее. Если же наблюдать её с горы либо с воздуха, она может предстать перед глазами в виде целой окружности.

Порядок цветов радуги

Многие знают фразу, позволяющую запомнить то, в каком порядке цвета радуги расположены. Для тех, кто не знает или не помнит, напомним то, как звучит эта строчка: "Каждый Охотник Желает Знать Где Сидит Фазан" (к слову, сейчас существует множество аналогов этому известному моностиху, более современных, а иногда и весьма весёлых). Цвета радуги по порядку: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый.

Своё местоположение эти цвета не меняют, запечатлевая в памяти извечный вид такого невероятно красивого явления. Радуга, которую мы часто наблюдаем, является первичной. При её образовании белый свет претерпевает лишь одно внутреннее отражение. В таком случае красный свет находится снаружи, как мы и привыкли видеть. Однако может образоваться и вторичная радуга. Это довольно редкое явление, при котором белый свет дважды отражается в каплях. В таком случае цвета радуги по порядку уже расположены в обратном направлении (от фиолетового к красному). При этом часть неба, которая находится между этими двумя дугами, становится темнее. В местах, обладающих очень чистым воздухом, можно наблюдать даже "тройную" радугу.

Необычные радуги

Кроме всем привычной радуги в форме дуги, можно наблюдать и другие её формы. К примеру, можно наблюдать лунные радуги (но человеческому глазу их сложно уловить, для этого свечение от луны должно быть очень ярким), туманные, кольцевые (об этих явлениях уже упоминалось выше) и даже перевёрнутые. К тому же радугу можно наблюдать и зимой. В это время года она иногда возникает из-за сильных морозов. Но некоторые из этих феноменов к "небесным мостам" никакого отношения не имеют. Очень часто за радугу ошибочно принимают(так называется светящееся кольцо, образовывающееся вокруг определённого объекта).

Радуга заставит улыбнуться любого человека! Особенно большая, растянувшаяся на всё небо. Или маленькая, устроившаяся в настольном фонтане – такая своя, ручная. От чего зависит, какого размера вырастет радуга, и что это вообще такое? Читайте всплывающие подсказки на схеме, чтобы разобраться.

1. Радуга - это оптическая иллюзия. Она возникает, когда капельки воды (дождь, туман или брызги от водопада) освещаются солнцем. Бывают и лунные радуги (на фото одна из таких), их можно наблюдать ночью.

2. Попадая в каплю, свет дважды преломляется на границе воздуха и воды и отражается от “задней” стенки капли, возвращаясь под углом примерно 42 градуса к свету. Коэффициент преломления света с разной длиной волны немного отличается, поэтому лучи различных цветов выходят из капли под разными углами. Так белый свет превращается в радугу.

3. Иллюзию радуги создают те капли, которые оказываются на пересечении солнечных лучей и линии взора наблюдателя. У всех радуг на свете одинаковый угловой размер - 42 градуса.

4. Линейный радиус радуги зависит от расстояния между наблюдателем и каплями воды. К примеру, радуга, возникшая на расстоянии 5 метров от человека, будет иметь радиус примерно 4,5 метра (5 метров, помноженные на тангенс 42°).

5. Центр радуги находится в антисолнечной точке - на прямой, соединяющей наблюдателя и солнце. Плоскость радуги перпендикулярна этой прямой. Антисолнечная точка мнимая и может находиться под землей. Кстати, в ясный день светило способно создавать не только иллюзорные, но и вполне осязаемые эффекты, например .


Мы продолжаем серию публикаций, подготовленных интерактивным научно-популярным блогом « Объясню за две минуты ». Блог рассказывает о простых и сложных вещах, которые ежедневно нас окружают и не вызывают никаких вопросов ровно до тех пор, пока мы о них не задумываемся. Например, там можно узнать, как долго лететь на Марс и на какие даты брать билеты.

1. Радуга — это оптическая иллюзия. Она возникает, когда капельки воды (дождь, туман или брызги от водопада) освещаются солнцем. Бывают и лунные радуги (на фото одна из таких), их можно наблюдать ночью.


2. Попадая в каплю, свет дважды преломляется на границе воздуха и воды и отражается от «задней» стенки капли, возвращаясь под углом примерно 42 градуса к свету. Коэффициент преломления света с разной длиной волны немного отличается, поэтому лучи различных цветов выходят из капли под разными углами. Так белый свет превращается в радугу.


3. Иллюзию радуги создают те капли, которые оказываются на пересечении солнечных лучей и линии взора наблюдателя. У всех радуг на свете одинаковый угловой размер — 42 градуса.


4. Линейный радиус радуги зависит от расстояния между наблюдателем и каплями воды. К примеру, радуга, возникшая на расстоянии 5 метров от человека, будет иметь радиус примерно 4,5 метра (5 метров, помноженные на тангенс 42°).


5. Центр радуги находится в антисолнечной точке — на прямой, соединяющей наблюдателя и солнце. Плоскость радуги перпендикулярна этой прямой. Антисолнечная точка мнимая и может находиться под землей. Кстати, в ясный день светило способно создавать не только иллюзорные, но и вполне осязаемые эффекты, например воздушные ямы.


Посмотреть интерактивную версию схемы можно в блоге «Объясню за две минуты».

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение 3

Глава 1. Литературный анализ по теме исследования 5

1.1. Исторический аспект изучения темы 5

1.2. Основные понятия изучаемой проблемы 6

1.3. Характеристика видов радуги 9

Глава 2. Экспериментальная часть 11

2.1. Методика экспериментальной работы 11

2.2. Результаты экспериментальной работы 14

Заключение 17

Список литературы 18

Приложение 1. 19

Приложение 2. 21

Приложение 3. 22

Приложение 4. 26

Приложение 5. 28

Введение

Актуальность.

Наверное, нет человека, который не любовался бы радугой. Это великолепное красочное явление на небосводе издавна привлекало всеобщее внимание. Её считали доброй предвестницей, приписывали ей магические свойства. Все знают, что волшебными свойствами радуга может обладать лишь в сказках, а в действительности радуга - это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя. Однако не все знают, как именно образуется радуга. Когда и как её можно увидеть? Можно ли экспериментально исследовать радугу? Как получить искусственную радугу? Ответы на эти и многие другие вопросы даются в этой работе.

Объект исследования: природное явление - радуга.

Предмет исследования: способы получения радуги.

Я выдвинула следующую гипотезу: используя разные лабораторные установки, можно получить искусственную радугу и исследовать ее физические свойства в лабораторных условиях.

Цель моего исследования: выявить физические свойства радуги и экспериментально апробировать способы её получения в лабораторных условиях.

Поставленную цель я достигала, решая задачи:

    собрать информацию о способах получения, свойствах и видах радуги;

    сконструировать лабораторные установки для получения радуги и апробировать их в домашних условиях;

    проанализировать теоретические и практические результаты своей работы.

Этапы исследования:

    собрать информацию о видах и свойствах радуги (спросить у родителей, прочитать в книге, найти в Интернете);

    подобрать экспериментальные работы по получению искусственной радуги;

    сконструировать лабораторные установки для получения искусственной радуги;

    провести эксперимент;

    сравнить теоретический и практический результат по получению искусственной радуги;

    оформить научно-исследовательскую работу;

    подготовить доклад и презентацию к защите работы.

Методы и приемы: наблюдение, эксперимент, анализ.

Глава 1. Литературный анализ по теме исследования

    1. Исторический аспект изучения темы

В русских летописях радуга называется «райской дугой» или сокращенно «райдуга». В Древней Греции радугу олицетворяла богиня Ирида («Ирида» означает «радуга»). По представлениям древних греков, радуга соединяет небо и землю, и Ирида была посредницей между богами и людьми. Радуга физическое явление. 8

Радуга всегда связывается с дождем. Она может появиться и перед дождем, и во время дождя, и после него, в зависимости от того, как перемещается облако, дающее ливневые осадки.

Первая попытка объяснить радугу как естественное явление природы была сделана в 1611 г. архиепископом Антонио Доминисом. Его объяснение радуги противоречило библейскому, поэтому он был отлучен от церкви и приговорен к смертной казни. Антонио Доминис умер в тюрьме, не дождавшись казни, но его тело и рукописи были сожжены. 8

Научное объяснение радуги впервые дал Рене Декарт в 1637 г. Декарт объяснил радугу на основании законов преломления и отражения солнечного света в каплях выпадающего дождя. В то время еще не была открыта дисперсия — разложение белого света в спектр при преломлении. Поэтому радуга Декарта была белой.

Спустя 30 лет Исаак Ньютон, открывший дисперсию белого света при преломлении, дополнил теорию Декарта, объяснив, как преломляются цветные лучи в каплях дождя. 3

Несмотря на то, что теория радуги Декарта — Ньютона создана более 300 лет назад, она правильно объясняет основные особенности радуги: положение главных дуг, их угловые размеры, расположение цветов в радугах различных порядков.

    1. Основные понятия изучаемой проблемы

Обычная радуга — это цветная дуга угловым радиусом 42°, видимая на фоне завесы ливневого дождя или полос падения дождя, часто не достигающих поверхности Земли. Радуга видна в стороне небосвода, противоположной Солнцу, и обязательно при Солнце, не закрытом облаками. Центром радуги является точка, диаметрально противоположная Солнцу, — антисолярная точка. Внешняя дуга радуги красная, за нею идет оранжевая, желтая, зеленая дуги и т. д., кончая внутренней фиолетовой. 2

Дело в том, что более или менее сферическая капля, освещенная параллельным пучком лучей солнечного света, может образовать радугу только в виде круга.

Сколько же лучей радуги в пучке света, падающего на каплю? Их много, по существу, они образуют целый цилиндр. Геометрическое место точек их падения на каплю это целая окружность.

В результате прохождения через каплю и преломления в ней цилиндр белых лучей преобразуется в серию цветных воронок, вставленных одна в другую. Наружная воронка красная, в нее вставлена оранжевая, желтая, далее идет зеленая и т. д., кончая внутренней фиолетовой. 4

Размер и форма капель и их влияние на вид радуги

Вид радуги — ширина дуг, расположение и яркость цветовых тонов, положение дополнительных дуг очень сильно зависят от размера капель дождя. По виду радуги можно приближенно оценить размеры капель дождя, образовавших эту радугу. Чем крупнее капли дождя, тем радуга получается уже и ярче. Особенно характерным для крупных капель является наличие насыщенного красного цвета в основной радуге. Чем капли мельче, тем радуга становится более широкой и блеклой, с оранжевым или желтым краем. Дополнительные дуги дальше отстоят и друг от друга и от основных радуг. 8

Вид радуги зависит и от формы капель. При падении в воздухе крупные капли сплющиваются, теряют свою сферичность. Вертикальное сечение таких капель приближается к эллипсу.

Можно ли видеть целый круг радуги? С поверхности Земли можно наблюдать радугу в лучшем случае в виде половины круга, когда Солнце находится на горизонте. Когда Солнце поднимается, радуга уходит под горизонт. С самолета или с вертолета можно наблюдать радугу в виде целого круга. 8

Расчеты по формулам дифракционной теории, выполненные для капель разного размера, показали, что весь вид радуги — ширина дуг, наличие, расположение и яркость отдельных цветовых тонов, положение дополнитель-ных дуг очень сильно зависят от размера капель дождя. Приведем основные характеристики внешнего вида радуги для капель разных радиусов. 5

Радиус капель 0,5 —1 мм. Наружный край основной радуги яркий, темно-красный, за ним идет светло-красный и далее чередуются все цвета радуги. Особенно яркими кажутся фиолетовый и зеленый. Дополнительных дуг много (до пяти), в них чередуются фиолетово-розовые тона с зелеными. Дополнительные дуги непосредственно примыкают к основным радугам.

Радиус капель 0,25 мм. Красный край радуги стал слабее. Остальные цвета видны по-прежнему. Несколько фиолетово-розовых дополнительных дуг сменяются зелеными.

Радиус капель 0,10 0,15 мм. Красного цвета в основной радуге больше нет. Наружный край радуги оранжевый. В остальном радуга хорошо развита. Дополнительные дуги становятся все более желтыми. Между ними и между основной радугой и первой дополнительной появились просветы.

Радиус капель 0,04 0,05 мм. Радуга стала заметно шире и бледнее. Наружный край ее бледно-желтый. Самым ярким является фиолетовый цвет. Первая дополнительная дуга отделена от основной радуги довольно широким промежутком, цвет ее белесый, чуть зеленоватый и беловато-фиолетовый.

Радиус капель 0,03 мм. Основная радуга еще более широкая с очень слабо окрашенным чуть желтоватым краем, содержит отдельные белые полосы.

Радиус капель 0,025 мм и менее. Радуга стала совсем белой. Она при-мерно в два раза шире обычной радуги и имеет вид блестящей белой полосы. Внутри нее могут быть дополнительные окрашенные дуги, сначала бледно-голубые или зеленые, затем белесовато-красные. 1

Таким образом, по виду радуги можно приближенно оценить размеры капель дождя, образовавших эту радугу. В целом, чем крупнее капли дождя, тем радуга получается уже и ярче, особенно характерным для крупных капель является наличие насыщенного красного цвета в основной радуге. Многочисленные дополнительные дуги также имеют яркие тона и непо-средственно, без промежутков, примыкают к основным радугам. Чем капли мельче, тем радуга становится более широкой и блеклой с оранжевым или желтым краем. Дополнительные дуги дальше отстоят и друг от друга и от основных радуг.

Вид радуги зависит и от формы капель. При падении в воздухе крупные капли сплющиваются, теряют свою сферичность. Вертикальное сечение таких капель приближается к элипсу. Расчеты показали, что минимальное отклонение красных лучей при прохождении через сплющенные капли радиусом 0,5 мм составляет 140°. Поэтому угловой размер красной дуги будет не 42°, а только 40°. Для более крупных капель, например радиу-сом 1,0 мм, минимальное отклонение красных лучей составит 149°, а крас-ная дуга радуги будет иметь размер 31°, вместо 42°. Таким образом, чем сильнее сплющивание капель, тем меньше радиус образуемой ими радуги. 7

    1. Характеристика видов радуги

Бывают ли радуги без дождя или без полос падения дождя? Бывают — в лаборатории. Искусственные радуги создавались в результате преломления света в одной подвешенной капельке дистиллированной воды, воды с сиропом или прозрачного масла. Размеры капель варьировались от 1,5 до 4,5 мм. Тяжелые капли вытягивались под действием силы тяжести, и их сечение представляло собою эллипс. При освещении капельки лучом гелий-неонового лазера появлялись не только первая и вторая радуги, но и необычайно яркие третья и четвертая, с центром вокруг источника света (в данном случае лазера). Иногда удавалось получать даже пятую и шестую радуги. Эти радуги, как первая и вторая, снова были в стороне, противоположной источнику. Правда, эти радуги были одноцветными, красными, так как образованы не белым источником света, а монохроматическим красным лучом. 8

Туманная радуга

В природе встречаются белые радуги. Они появляются при освещении солнечными лучами слабого тумана, состоящего из капелек радиусом 0,025 мм или менее. Их называют туманными радугами. Кроме основной радуги в виде блестящей белой дуги с едва заметным желтоватым краем наблюдаются иногда окрашенные дополнительные дуги: очень слабая голубая или зеленая дуга, а затем белесовато-красная.

Аналогичного вида белую радугу можно увидеть, когда луч прожектора, расположенного сзади вас, освещает интенсивную дымку или слабый туман перед вами. Даже уличный фонарь может создать, хотя и очень слабую, белую радугу, видимую на темном фоне ночного неба. 6

Лунные радуги

Аналогично солнечным могут возникнуть и лунные радуги. Они более слабые и появляются при полной Луне. Лунные радуги явление более редкое, чем солнечные. Для их возникновения необходимо сочетание двух условий: полная Луна, не закрытая облаками, и выпадение ливневого дождя или полос его падения (не достигающих Земли).

Радуги, образованные лунными лучами, не радужные и выглядят как светлые, совершенно белые дуги. Отсутствие красного цвета у лунных радуг даже при крупных каплях дождя объясняется низким уровнем освещения ночью, при котором полностью теряется чувствительность глаза к лучам красного цвета. Остальные цветные лучи радуги также теряют в значительной степени свой цветовой тон из-за неокрашенности ночного зрения человека. 8

Глава 2. Экспериментальная часть 2.1. Методика экспериментальной работы

Для получения радуги в лабораторных условиях существует множество способов и методик, мы в своей работе использовали следующие:

Опыт 1. Радуга в тазике.

Оборудование и материалы: стеклянная ёмкость; вода; зеркало.

Ход работы:

Солнечным днём наполни большую стеклянную ёмкость водой. Затем опусти в воду зеркало. Подвигай это зеркало и найди такое его положение, при котором на стенках комнаты образуется радуга. Можешь зафиксировать положение зеркала.Дай воде успокоиться для того, чтобы радуга получилась более отчетливой, а потом нарисуй или сфотографируй радугу так, как ты ее увидел.

Оборудование и материалы: стеклянная ёмкость; вода; зеркало; белый лист бумаги; фонарик.

Ход работы:

Солнечным днём наполни большую стеклянную ёмкость водой. Затем опусти в воду зеркало. Подвигай это зеркало и найди такое его положение, при котором на стенках комнаты образуется радуга. Можешь зафиксировать положение зеркала.Дай воде успокоиться для того, чтобы радуга получилась более отчетливо. Дополнительно поставить перед тазиком с водой и зеркалом лист белой бумаги, направите свет фонарика на погруженную в воду часть зеркала, радуга появится на листе бумаги. Потом нарисуй или сфотографируй радугу так, как ты ее увидел.

Опыт 3. Радуга в коробке.

Оборудование и материалы: картонная коробка; канцелярский нож; компакт-диск типа CD-R; пластмассовая трубка; клей; фонарик; свечка; люминесцентная лампа.

Ход работы:

Возьмите большую картонную коробку. В ее боковой стенке прорежьте вертикальную щель высотой в несколько сантиметров и шириной от 3 до 5 миллиметров. Она будет придавать потоку света форму тонкой полоски, простирающейся в вертикальной плоскости. На противоположной стенке коробки поместить чистый компакт-диск типа CD-R.

Теперь в боковой стенке коробки прорежьте отверстие под трубку для наблюдения спектра. Несмотря на то, что трубка имеет круглое сечение, отверстие должно быть овальным, чтобы ее можно было поворачивать в горизонтальной плоскости.

Вставьте трубку в отверстие. Направьте щель на источник света. Загляните в трубку, и, поворачивая ее, найдите спектр и рассмотрите его.

Попробуйте пронаблюдать с помощью спектроскопа спектры различных источников света: солнца, лампы накаливания, люминесцентной лампы, свечи, светодиодов разных цветов.

Спектры, полученные при помощи спектроскопа, можно фотографировать веб-камерой или цифровым фотоаппаратом.

Оборудование и материалы: лист фанеры, нож, фонарь, лист белой бумаги, компакт-диск, карандаши, фотоаппарат.

Ход работы:

Возьмите лист фанеры, пластмассы или другого легкообрабатываемого непрозрачного материала. Его размеры должны быть примерно 300 на 300 миллиметров, толщина не критична. Прорежьте в его середине прямую щель длиной около 100 и шириной порядка 4 миллиметров.

Расположите лист вертикально. Сделайте для него подставку, чтобы его не требовалось держать в руках, ведь вам придется удерживать в них еще два предмета, затемните помещение.

Включите точечный источник света с непрерывным спектром. Это может быть, например, карманный фонарик на основе лампочки накаливания. Расположите его примерно в 500 миллиметрах от щели.

С противоположной стороны щели разместите под углом в 90 градусов лист обычной бумаги. Закрепите его.

Возьмите обычный компакт-диск (темный, например, RW, не подойдет). Расположите его между щелью и листом бумаги так, чтобы на него проецировался спектр.

Удерживая фонарик и диск, попросите помощника сфотографировать получившуюся радугу.

Держите фонарик и диск так, чтобы спектр не сдвигался. Обратите внимание на то, что к сдвигу диска он заметно чувствительнее, чем к сдвигу фонарика.

Затем попросите помощника взять цветные карандаши или фломастера. Пусть помощник обведет спектр карандашами или фломастерами тех цветов, которые соответствуют проецируемым.

Снимите получившийся лист, после чего отключите фонарь и разберите установку. Включите свет в помещении. Сравните получившиеся фотографию и рисунок между собой.

Ответьте на вопрос, почему цвета в любом спектре всегда расположены в одинаковом порядке?

Опыт 5. Радужный фонтан.

Оборудование и материалы: консервная банка, ножницы, электрическая лампочка, вода.

Ход работы:

В высокой консервной банке на высоте 5 см от дна надо просверлить круглое отверстие диаметром 5 - 6 мм. Электрическую лампочку с патроном надо аккуратно обернуть целлофановой бумагой и расположить ее напротив отверстия. В банку надо налить воды. Открыв отверстие, получим струю, которая будет освещена изнутри. В темной комнате она ярко светится и опят выглядит очень эффектно.

2.2. Результаты экспериментальной работы

Мы с мамой и папой дома проделали опыты, описанные в пункте 2.1. Результаты, полученные в ходе экспериментальной части работы можно описать следующим образом:

Опыт 1. Радуга в тазике.

Наполнили стеклянную чашку водой. Затем опустили в воду зеркало и осветили его фонариком. Подвигали зеркало, и нашли такое положение, при котором на стенках комнаты образовалась радуга. Когда вода успокоилась, радуга получилась более отчетливой.

Наблюдения:

Мы получили вид радуги, отражающийся на зеркале (приложение 1). Пучок света, отражённый зеркалом на выходе из воды, преломляется. Цвета, составляющие белый цвет, имеют разные углы преломления, поэтому они падают в разные точки и становятся видимыми.

Опыт 2. Радуга на белом листе.

Все осталось из опыта 1, только дополнительно поставили перед чашкой с водой лист белой бумаги, направили свет фонарика на зеркало, радуга появится на листе бумаги.

Наблюдения:

Нам удалось поймать зеркалом лучик, который подарил нам вот такую радугу... (приложение 2).

Опыт 3. Радуга в коробке.

Мы взяли большую картонную коробку. В ее боковой стенке прорезали вертикальную щель, на противоположной стенке коробки поместили чистый компакт-диск. В боковой стенке коробки прорезали отверстие под трубку для наблюдения спектра.

Вставили трубку в отверстие. Направили источник света на щель. Заглянули в трубку, и, поворачивая ее, нашли спектр.

Мы сфотографировали спектры, полученные при помощи домашнего спектроскопа, и сравнили их.

Наблюдения:

Освещая диск разными источниками света(фонариком, лампой накаливания) мы получили спектры одинакового состава, что видно на фотографиях (приложение 3).

Опыт 4. Изучение расположения цветов в радуге.

Из листа фанеры мы сделали подставку. В середине одной стороны прорезали прямую щель. Расположили лист белой бумаги вертикально. Затемнили помещение. Компакт-диск разместили между щелью и листом бумаги так, чтобы на него падали лучи света. Карманным фонариком осветили щель.

Наблюдения:

На листе бумаги появляется радуга (приложение 4), цвета в любом спектре всегда расположены в одинаковом порядке.

Опыт 5. Радужный фонтан.

В высокой консервной банке папа просверлил круглое отверстие. В банку мы налили воды. Электрическую лампочку с патроном аккуратно расположили напротив отверстия. В темной комнате открыли отверстие.

Наблюдения:

Получили струю, которая освещена изнутри, она ярко светится. На пути струи подставили палец, и вода разбрызгивалась в виде фонтан, у которого выбрасываемые струи освещаются изнутри (приложение 5).

Заключение

Выполнив эту работу, я убедилась, как много удивительного, поучительного, полезного для практики может заключаться, в хорошо знакомом явлении преломлении света.

В ходе своего исследования я сформулировала следующие выводы :

    Для получения радуги в лабораторных условиях существует множество способов и методик.

    В экспериментальной части приведено описание нескольких установок, с помощью которых искусственная радуга была получена в домашних условиях.

    Полученные результаты при исследовании радуги могут быть интересны и полезны как для стороннего наблюдателя, так и для школьников.

В заключении необходимо отметить, что радуга - очень интересное явление, изучение которого требует больших усилий и является очень познавательным, а практическая ценность работы состоит в том, что полученные материалы могут быть использованы учителями начальных классов при проведении уроков и занятий по ознакомлению с окружающим миром.

Список литературы

    «Большая Энциклопедия Кирилла и Мефодия».

    Белкин И.К. Что такое радуга? - «Квант» 1984, № 12, С. 20.

    Булат В.Л. Оптические явления в природе. М.: Просвещение, 1974 г., 143 с.

    Гегузин Я.Е. «Кто творит радугу?» - «Квант» 1988г., № 6, С. 46.

    Зверева С.В. В мире солнечного света. - Л.: Гидрометеоиздат, 1988.

    Майер В.В., Майер Р.В. «Искусственная радуга» - «Квант» 1988 г., № 6, С.48.

    Тарасов Л.В. Физика в природе. - М.: Просвещение, 1988.

    http://www.allbest.ru

Приложение 1.

Фотографии результатов опыта 1

Рисунок 1. Подготовка оборудования к работе.

Рисунок 2. Устанавливаем зеркало в тарелку с водой.

Рисунок 3. Общий вид радуги на стене.

Рисунок 4. Увеличенное отражение радуги.

Приложение 2.

Фотографии результатов опыта 2

Рисунок 5. Отражение радуги на листе бумаги.

Рисунок 6. Вид радуги на листе белой бумаги.

Приложение 3.

Фотографии результатов опыта 3

Рисунок 7. Подготовка спектроскопа из картонной коробки.

Рисунок 8. Подготовка спектроскопа из картонной коробки.

Рисунок 9. Освещение диска с помощью фонарика.

Рисунок 10. Наблюдаем за появлением радуги в коробке.

Рисунок 11. Сектор радуги, который мы получили при освещении фонариком со светодиодными лампами.

Рисунок 12. Сектор радуги, который мы получили при освещении фонариком со светодиодными лампами.

Рисунок 13. Сектор радуги, который мы получили при освещении лампой накаливания.

Рисунок 14. Сектор радуги, который мы получили при освещении лампой накаливания.

Приложение 4.

Фотографии результатов опыта 4

Рисунок 15. Макет из фанеры.

Рисунок 16. Компакт-диск, с помощью которого будет преломляться свет.

Рисунок 17. Радуга на листе бумаги (А и Б).

Приложение 5.

Фотографии результатов опыта 5

Рисунок 18. Установка для получения радужного фонтана.

Рисунок 19. Наливаем воды в установку для получения радужного фонтана.

Рисунок 20. Открываем отверстие и получаем радужную струю.

Рисунок 21. Получение радужного фонтана.


Top