Парадокс близнецов или парадокс часов. Парадокс близнецов (мысленный эксперимент): объяснение Парадокс замедления времени

Отюцкий Геннадий Павлович

В статье рассмотрены сложившиеся подходы к рассмотрению парадокса близнецов. Показано: хотя формулировка этого парадокса связана со специальной теорией относительности, но к большинству попыток его объяснения привлекается общая теория относительности, что не является методологически корректным. Автор обосновывает положение о том, что сама формулировка "парадокса близнецов" изначально некорректна, ибо описывает событие, невозможное в рамках специальной теории относительности. Адрес статьи: отм^.агат^а.пе^т^епа^/З^СИУ/б/Зб.^т!

Источник

Исторические, философские, политические и юридические науки, культурология и искусствоведение. Вопросы теории и практики

Тамбов: Грамота, 2017. № 5(79) C. 129-131. ISSN 1997-292X.

Адрес журнала: www.gramota.net/editions/3.html

© Издательство "Грамота"

Информация о возможности публикации статей в журнале размещена на Интернет сайте издательства: www.gramota.net Вопросы, связанные с публикациями научных материалов, редакция просит направлять на адрес: [email protected]

Философские науки

В статье рассмотрены сложившиеся подходы к рассмотрению парадокса близнецов. Показано: хотя формулировка этого парадокса связана со специальной теорией относительности, но к большинству попыток его объяснения привлекается общая теория относительности, что не является методологически корректным. Автор обосновывает положение о том, что сама формулировка «парадокса близнецов» изначально некорректна, ибо описывает событие, невозможное в рамках специальной теории относительности.

Ключевые слова и фразы: парадокс близнецов; общая теория относительности; специальная теория относительности; пространство; время; одновременность; А. Эйнштейн.

Отюцкий Геннадий Павлович, д. филос. н., профессор

Российский государственный социальный университет, г. Москва

оИи2ку[email protected]таИ- ги

ПАРАДОКС БЛИЗНЕЦОВ КАК ЛОГИЧЕСКАЯ ОШИБКА

Парадоксу близнецов посвящены тысячи публикаций. Этот парадокс трактуется как мысленный эксперимент, идея которого порождена специальной теорией относительности (СТО). Из основных положений СТО (включая идею о равноправии инерциальных систем отсчета - ИСО) вытекает вывод, что с точки зрения «неподвижных» наблюдателей все процессы, происходящие в системах, движущихся со скоростями, близкими к скорости света, неизбежно должны замедляться. Исходное условие: один из братьев-близнецов - путешественник - отправляется в космический полёт со скоростью, сопоставимой со скоростью света с, и последующим возвращением на Землю. Второй брат - домосед - остаётся на Земле: «С точки зрения домоседа часы движущегося путешественника имеют замедленный ход времени, поэтому при возвращении они должны отстать от часов домоседа. С другой стороны, относительно путешественника двигалась Земля, поэтому отстать должны часы домоседа. На самом деле братья равноправны, следовательно, после возвращения их часы должны показывать одно время» .

Для обострения «парадоксальности» подчеркивается тот факт, что из-за замедления хода часов вернувшийся путешественник должен быть моложе домоседа. Дж. Томсон в свое время показал, что космонавт в полете к звезде «ближайшая Центавра» состарится (при скорости 0,5 от с) на 14,5 лет, в то время как на Земле пройдет 17 лет . Однако по отношению к космонавту в инерциальном движении находилась Земля, поэтому замедляется ход земных часов, и домосед должен стать моложе путешественника. В кажущемся нарушении симметричности братьев усматривается парадоксальность ситуации.

В форму наглядной истории близнецов парадокс облечен П. Ланжевеном в 1911 г. Он объяснял парадокс посредством учета ускоренного движения космонавта при возвращении на Землю. Наглядная формулировка обрела популярность и в дальнейшем использовалась в объяснениях М. фон Лауэ (1913), В. Паули (1918) и др. Всплеск интереса к парадоксу в 1950-х гг. связан с желанием спрогнозировать обозримое будущее пилотируемой космонавтики. Критически осмысливались работы Г. Дингла, который в 1956-1959 гг. попытался опровергнуть сложившиеся объяснения парадокса. На русском языке была опубликована статья М. Борна, содержавшая контрдоводы к аргументам Дингла . Не остались в стороне и советские исследователи .

Обсуждение парадокса близнецов продолжается до сих пор со взаимоисключающими целями - либо обоснования, либо опровержения СТО в целом. Авторы первой группы считают: этот парадокс - надежный аргумент для доказательства несостоятельности СТО. Так, И. А. Верещагин, относя СТО к лжеучению, замечает по поводу парадокса: «"Моложе, но старше" и "старше, но моложе" - как всегда со времен Эвбулида. Теоретики, вместо того чтобы сделать заключение о ложности теории, выдают суждение: либо кто-то из спорщиков будет моложе другого, либо они останутся в одном возрасте» . На этом основании утверждается даже, что СТО остановила развитие физики на сто лет. Ю. А. Борисов идет дальше: «Преподавание теории относительности в школах и вузах страны является ущербным, лишено смысла и практической целесообразности» .

Другие авторы считают: рассматриваемый парадокс - кажущийся, и он не свидетельствует о противоречивости СТО, а наоборот, является ее надежным подтверждением. Они приводят сложные математические выкладки для учета изменения системы отсчета путешественником и стремятся доказать, что СТО не противоречит фактам. Можно выделить три подхода к обоснованию парадокса: 1) выявление логических ошибок в рассуждениях, которые привели к видимому противоречию; 2) детальные расчеты величины замедления времени с позиций каждого из близнецов; 3) включение в систему обоснования парадокса других теорий, кроме СТО. Объяснения второй и третьей групп нередко пересекаются.

Обобщающая логика «опровержений» выводов СТО включает четыре последовательных тезиса: 1) Путешественник, пролетая мимо любых часов, неподвижных в системе домоседа, наблюдает их замедленный ход. 2) Их накопленные показания при длительном полёте могут отстать от показаний часов путешественника сколь угодно сильно. 3) Быстро остановившись, путешественник наблюдает отставание часов, расположенных в «точке остановки». 4) Все часы в «неподвижной» системе идут синхронно, поэтому отстанут и часы брата на Земле, что противоречит выводу СТО .

Издательство ГРАМОТА

Четвертый тезис при этом считается само собой разумеющимся и выступает как бы окончательным выводом о парадоксальности ситуации с близнецами применительно к СТО. Первые два тезиса действительно логически вытекают из постулатов СТО. Однако авторы, разделяющие такую логику, не хотят видеть, что третий тезис не имеет к СТО никакого отношения, поскольку «быстро остановиться» из скорости, сопоставимой со скоростью света, можно, лишь получив гигантское замедление за счет мощной внешней силы. Однако «опровергатели» делают вид, что ничего значительного не происходит: путешественник по-прежнему «должен наблюдать отставание часов, расположенных в точке остановки». Но почему «должен наблюдать», ведь закономерности СТО в этой ситуации перестают действовать? Внятный ответ отсутствует, точнее, он постулируется без доказательств.

Подобные логические скачки характерны и для авторов, «обосновывающих» этот парадокс посредством демонстрации несимметричности близнецов. Для них третий тезис - решающий, поскольку как раз с ситуацией ускорения/замедления они связывают скачки хода часов . По Д. В. Скобельцыну, «логично считать причиной эффекта [замедления часов] "ускорение", которое испытывает В в начале своего движения в отличие от А, который... все время остается неподвижным в одной и той же инерциальной системе» . Действительно, для того, чтобы вернуться на Землю, путешественнику надо выйти из состояния инерциаль-ного движения, затормозить, развернуться, а затем снова разогнаться до скорости, сопоставимой со скоростью света, а достигнув Земли, вновь затормозить и остановиться. Логика Д. В. Скобельцына, как и многих его предшественников и последователей, опирается на тезис самого А. Эйнштейна, который, правда, формулирует парадокс часов (но не «близнецов»): «Если в точке А находятся двое синхронно идущих часов, и мы перемещаем одни из них по замкнутой кривой с постоянной скоростью до тех пор, пока они не вернутся в А (на что потребуется, скажем, t сек), то эти часы по прибытии в А будут отставать по сравнению с часами, остававшимися неподвижными» . Сформулировав общую теорию относительности (ОТО), Эйнштейн попытался применить её в 1918 г. к объяснению эффекта часов в шутливом диалоге Критика и Релятивиста. Парадокс объяснялся посредством учета влияния гравитационного поля на изменение ритма времени [Там же, с. 616-625].

Однако и опора на А. Эйнштейна не спасает авторов от теоретической подмены, которая становится наглядной, если привести простую аналогию. Представим «Правила дорожного движения» с единственным правилом: «Сколь бы широкой ни была дорога, водитель обязан ехать равномерно и прямолинейно со скоростью 60 км в час». Формулируем задачу: один близнец - домосед, другой - дисциплинированный водитель. Каким будет возраст каждого из близнецов, когда водитель вернется из длительного путешествия домой?

Эта задача не только не имеет решения, но и сформулирована некорректно: если водитель дисциплинирован, то он не сможет вернуться домой. Для этого он должен либо с постоянной скоростью описать полукруг (непрямолинейное движение!), либо затормозить, остановиться и начать разгон в обратном направлении (неравномерное движение!). В любом из вариантов он перестает быть дисциплинированным водителем. Путешественник из парадокса - такой же недисциплинированный космонавт, нарушающий постулаты СТО.

С подобными же нарушениями связаны объяснения на основе сравнений мировых линий обоих близнецов. Прямо указывается, что «мировая линия путешественника, улетевшего с Земли и возвратившегося к ней, прямой не является» , т.е. ситуация из сферы СТО перемещается в сферу ОТО. Но «если парадокс близнецов является внутренней проблемой СТО, то она должна решаться методами СТО, без выхода за ее рамки» .

Многие авторы, «доказывающие» непротиворечивость парадокса близнецов, считают равнозначными мысленный эксперимент с близнецами и реальные эксперименты с мюонами. Так, А. С. Каменев считает, что в случае движения космических частиц феномен «парадокса близнецов» проявляется «очень заметно»: «движущийся с субсветовой скоростью нестабильный мюон (мю-мезон) существует в собственной системе отсчета примерно 10-6 сек, тогда как время его жизни относительно лабораторной системы отсчета оказывается приблизительно на два порядка больше (примерно 10-4 сек), - но тут уже скорость частицы отличается от скорости света всего лишь на сотые доли процента» . О том же пишет Д. В. Скобельцын . Авторы не видят или не хотят видеть принципиальное отличие ситуации близнецов от ситуации мюонов: близнец-путешественник вынужден выйти из подчинения постулатам СТО, изменяя скорость и направление движения, а мюоны на протяжении всего времени ведут себя как инерциальные системы, поэтому их поведение и может быть объяснено с помощью СТО.

А. Эйнштейн специально подчеркивал, что СТО имеет дело с инерциальными системами и только с ними, утверждая равноценность только всех «галилеевых (неускоренных) систем координат, т.е. таких систем, по отношению к которым в достаточной мере изолированные материальные точки движутся прямолинейно и равномерно» . Поскольку СТО не рассматривает такие движения (неравномерные и непрямолинейные), благодаря которым путешественник мог бы вернуться на Землю, постольку СТО накладывает запрет на такое возвращение. Парадокс близнецов, таким образом, вовсе не является парадоксальным: в рамках СТО он просто не может быть сформулирован, если строго принимать в качестве предпосылок те исходные постулаты, на которых базируется эта теория.

Лишь весьма редкие исследователи пытаются рассматривать положение о близнецах в формулировке, совместимой со СТО. В этом случае поведение близнецов рассматривается как аналогичное уже известному поведению мюонов. В. Г. Пивоваров и О. А. Никонов вводят представление о двух «домоседах» А и В на расстоянии Ь в ИСО К, а также о путешественнике С в ракете К", летящей со скоростью V, сравнимой со скоростью

света (Рис. 1). Все трое родились одновременно в момент пролета ракетой точки С. После встречи близнецов С и В можно сравнить возраст А и С с помощью посредника В, который является копией близнеца А (Рис. 2).

Близнец А считает, что в момент встречи В и С часы близнеца С покажут меньшее время. Близнец С считает, что он покоится, следовательно, из-за релятивистского замедления хода часов меньше времени пройдет у близнецов А и В. Получен типичный парадокс близнецов.

Рис. 1. Близнецы А и С рождаются одновременно с близнецом В по часам ИСО К"

Рис. 2. Близнецы В и С встречаются после того, как близнец С пролетел расстояние L

Заинтересованного читателя отсылаем к математическим выкладкам, приведенным в статье . Остановимся лишь на качественных выводах авторов. В ИСО К близнец С пролетает расстояние Ь между А и В со скоростью V. Это и определит собственный возраст близнецов А и В к моменту встречи В и С. Однако в ИСО К" собственный возраст близнеца С определяется временем, за которое он с той же скоростью пролетает L" - расстояние между А и В в системе К". Согласно СТО, Ь" короче расстояния Ь. А значит, и время, затраченное близнецом С по его собственным часам на полет между А и В, меньше возраста близнецов А и В. Авторы статьи подчеркивают, что в момент встречи близнецов В и С собственный возраст близнецов А и В отличается от собственного возраста близнеца С, и «причиной этого отличия является асимметрия начальных условий задачи» [Там же, с. 140].

Таким образом, предложенная В. Г. Пивоваровым и О. А. Никоновым теоретическая формулировка ситуации с близнецами (совместимая с постулатами СТО) оказывается аналогичной ситуации с мюонами, подтвержденной физическими опытами.

Классическая формулировка «парадокса близнецов» в том случае, когда она соотносится со СТО, является элементарной логической ошибкой. Будучи логической ошибкой, парадокс близнецов в его «классической» формулировке не может выступать аргументом ни за, ни против СТО.

Значит ли это, что нельзя обсуждать тезис о близнецах? Конечно, можно. Но если речь идет о классической формулировке, то ее следует рассматривать как тезис-гипотезу, но не как парадокс, связанный со СТО, поскольку для обоснования тезиса привлекаются концепции, находящиеся за рамками СТО. Заслуживает внимания дальнейшее развитие подхода В. Г. Пивоварова и О. А. Никонова и обсуждение парадокса близнецов в формулировке, отличной от понимания П. Ланжевена и совместимой с постулатами СТО.

Список источников

1. Борисов Ю. А. Обзор критики теории относительности // Международный журнал прикладных и фундаментальных исследований. 2016. № 3. С. 382-392.

2. Борн М. Космические путешествия и парадокс часов // Успехи физических наук. 1959. Т. LXIX. С. 105-110.

3. Верещагин И. А. Лжеучения и паранаука ХХ века. Часть 2 // Успехи современного естествознания. 2007. № 7. С. 28-34.

4. Каменев А. С. Теория относительности А. Эйнштейна и некоторые философские проблемы времени // Вестник Московского государственного педагогического университета. Серия «Философские науки». 2015. № 2 (14). С. 42-59.

5. Парадокс близнецов [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/Парадокс_близнецов (дата обращения: 31.03.2017).

6. Пивоваров В. Г., Никонов О. А. Замечания к парадоксу близнецов // Вестник Мурманского государственного технического университета. 2000. Т. 3. № 1. С. 137-144.

7. Скобельцын Д. В. Парадокс близнецов и теория относительности. М.: Наука, 1966. 192 с.

8. Терлецкий Я. П. Парадоксы теории относительности. М.: Наука, 1966. 120 с.

9. Томсон Дж. П. Предвидимое будущее. М.: Иностранная литература, 1958. 176 с.

10. Эйнштейн А. Собрание научных трудов. М.: Наука, 1965. Т. 1. Работы по теории относительности 1905-1920. 700 с.

THE TWIN PARADOX AS A LOGIC ERROR

Otyutskii Gennadii Pavlovich, Doctor in Philosophy, Professor Russian State Social University in Moscow [email protected] ru

The article deals with the existing approaches to the consideration of the twin paradox. It is shown that although the formulation of this paradox is related to the special theory of relativity, the general theory of relativity is also used in most attempts to explain it, which is not methodologically correct. The author grounds a proposition that the formulation of the "twin paradox" itself is initially incorrect, because it describes the event that is impossible within the framework of the special theory of relativity.

Key words and phrases: twin paradox; general theory of relativity; special theory of relativity; space; time; simultaneity; A. Einstein.

Основным назначением мысленного эксперимента под названием «Парадокс близнецов» было опровержение логичности и обоснованности специальной теории относительности (СТО). Стоит сразу оговориться, что ни о каком парадоксе на самом деле речи не идёт, а само слово фигурирует в этой теме потому, что суть мысленного эксперимента была изначально неправильно воспринята.

Основная идея СТО

Парадокс (парадокс близнецов) гласит, что «неподвижный» наблюдатель воспринимает процессы движущихся объектов как замедляющиеся. В соответствии с той же теорией инерциальные системы отсчёта (системы, в которых движение свободных тел происходит прямолинейно и равномерно либо они находятся в состоянии покоя) равноправны относительно друг друга.

Парадокс близнецов: кратко

С учётом второго постулата возникает предположение о противоречивости Чтобы разрешить эту проблему наглядно, было предложено рассмотреть ситуацию с двумя братьями-близнецами. Одного (условно - путешественника) отправляют в космический полёт, а другого (домоседа) оставляют на планете Земля.

Формулировка парадокса близнецов при таких условиях обычно звучит так: по оценке домоседа, время на тех часах, которые находятся у путешественника, движется медленнее, а значит, когда он вернётся, его (путешественника) часы будут отставать. Путешественник, напротив, видит, что относительно него движется Земля (на которой находится домосед со своими часами), и, с его точки зрения, именно у его брата время будет идти более медленно.

В действительности оба брата находятся в равных условиях, а значит, когда они окажутся вместе, то на их часах время будет одинаковым. Одновременно по теории относительности отставать должны именно часы брата-путешественника. Такое нарушение очевидной симметричности было рассмотрено как несогласованность положений теории.

Парадокс близнецов из теории относительности Эйнштейна

В 1905 году Альберт Эйнштейн вывел теорему, которая гласит, что при нахождении в точке А пары синхронизированных друг с другом часов можно перемещать одни из них по криволинейной замкнутой траектории с неизменной скоростью до тех пор, пока они вновь не достигнут точки А (и на это будет затрачено, например, t секунд), но в момент прибытия они покажут меньшее время, чем те часы, что оставались неподвижны.

Шесть лет спустя статус парадокса этой теории придал Поль Ланжевен. «Завернутая» в наглядную историю, она скоро приобрела популярность даже среди людей, далёких от науки. По мнению самого Ланжевена, нестыковки в теории объяснялись тем, что, возвращаясь на Землю, путешественник двигался ускоренно.

Ещё через два года Максом фон Лауэ была выдвинута версия о том, что значимы вовсе не моменты ускорения объекта, а тот факт, что он попадает в другую инерциальную систему отсчёта, когда оказывается на Земле.

Наконец в 1918 году Эйнштейн смог сам объяснить парадокс двух близнецов через влияние поля гравитации на течение времени.

Объяснение парадокса

Парадокс близнецов объяснение имеет довольно простое: изначальное предположение о равноправии между двумя системами отсчёта неверно. Путешественник пребывал в инерциальной системе отсчёта не всё время (это же касается и истории с часами).

Как следствие, многие посчитали, что специальную теорию относительности нельзя использовать для правильной формулировки парадокса близнецов, иначе получаются несовместимые друг с другом предсказания.

Всё разрешилось, когда была создана Она дала точное решение для имеющейся задачи и смогла подтвердить, что из пары синхронизированных часов отставать будут именно те, которые находятся в движении. Так изначально парадоксальная задача получила статус рядовой.

Спорные моменты

Существуют предположения о том, что момент ускорения достаточно значим для изменения скорости хода часов. Но в ходе многочисленных экспериментальных проверок было доказано, что под действием ускорения движение времени не ускоряется и не замедляется.

В итоге отрезок траектории, на котором один из братьев ускорялся, демонстрирует только некоторую асимметричность, возникающую между путешественником и домоседом.

Но данное утверждение не может объяснить, почему время замедляется именно у движущегося объекта, а не у того, что остаётся в покое.

Проверка практикой

Парадокс близнецов формулы и теоремы описывают точно, но это для человека некомпетентного довольно сложно. Для тех, кто больше склонен доверять практике, а не теоретическим выкладкам, были проведены многочисленные эксперименты, целью которых было доказать или опровергнуть теорию относительности.

В одном из случаев использовались Они отличаются сверхточностью, и для минимальной рассинхронизации им потребуется не один миллион лет. Помещённые в пассажирский самолёт, они несколько раз облетели Землю и после показали вполне заметное отставание от тех часов, которые никуда не летали. И это притом что скорость передвижения у первого образца часов была далеко не световая.

Другой пример: более продолжительна жизнь мюонов (тяжёлых электронов). Эти элементарные частицы в несколько сотен раз тяжелее обычных, обладают отрицательным зарядом и формируются в верхнем слое земной атмосферы благодаря действию космических лучей. Скорость их движения к Земле лишь на малость уступает световой. При их истинной продолжительности жизни (в 2 микросекунды) они распадались бы раньше, чем коснутся поверхности планеты. Но в процессе полёта они живут в 15 раз дольше (30 микросекунд) и всё-таки достигают цели.

Физическая причина парадокса и обмен сигналами

Парадокс близнецов физика объясняет и более доступным языком. Пока происходит полёт, оба брата-близнеца находятся вне зоны досягаемости друг для друга и не могут на практике удостовериться в том, что их часы движутся синхронно. Точно определить, насколько замедляется движение часов у путешественника, можно, если проанализировать сигналы, которые они будут посылать друг другу. Это условные сигналы «точного времени», выраженные как световые импульсы или видеотрансляция циферблата часов.

Нужно понимать, что передаваться сигнал будет не в настоящем времени, а уже в прошедшем, поскольку распространение сигнала происходит с определённой скоростью и требуется определённое время, чтобы пройти от источника до приёмника.

Правильно оценивать результат сигнального диалога можно только с учётом эффекта Доплера: при удалении источника от приёмника частота сигнала уменьшится, а при приближении - увеличится.

Формулировка объяснения в парадоксальных ситуациях

Для объяснения парадоксов подобных историй с близнецами можно применить два основных способа:

  1. Внимательное рассмотрение имеющихся логических построений на предмет противоречий и выявление логических ошибок в цепи рассуждений.
  2. Осуществление детальных вычислений с целью оценки факта торможения времени с точки зрения каждого из братьев.

В первую группу попадают вычислительные выражения, основанные на СТО и вписанные в Здесь подразумевается, что моменты, связанные с ускорением движения, настолько малы по отношению к общей длине полёта, что ими можно пренебречь. В отдельных случаях могут вводить третью инерциальную систему отсчёта, которая продвигается по встречному направлению в отношении путешественника и используется для передачи данных с его часов на Землю.

Во вторую группу входят вычисления, построенные с учётом того, что моменты ускоренного движения всё же присутствуют. Сама эта группа также подразделяется на две подгруппы: в одной применяется гравитационная теория (ОТО), а в другой - нет. Если ОТО задействована, то подразумевается, что в уравнении фигурирует поле гравитации, которое соответствует ускорению системы, и берётся во внимание изменение скорости течения времени.

Заключение

Все обсуждения, связанные с мнимым парадоксом, обусловлены лишь кажущейся логической ошибкой. Как бы ни были сформулированы условия задачи, добиться того, чтобы братья оказались в полностью симметричных условиях, невозможно. Важно учесть, что время замедляется именно на движущихся часах, которым пришлось пройти через смену систем отсчёта, потому что одновременность событий относительна.

Рассчитать, насколько замедлилось время с точки зрения каждого из братьев, можно двумя способами: используя простейшие действия в рамках специальной теории относительности либо ориентируясь на неинерциальные системы отсчёта. Результаты обеих цепей вычислений могут быть взаимно согласованы и в равной степени служат для подтверждения того, что на движущихся часах время идёт медленнее.

На этом основании можно предполагать, что при перенесении мысленного эксперимента в реальность тот, кто займёт место домоседа, действительно состарится быстрее, чем путешественник.


Хотите удивить всех своей молодостью? Отправляйтесь в длительный космический полет! Хотя, когда вернетесь, удивляться, скорее всего, уже будет некому...

Давайте проанализируем историю двух братьев-близнецов.
Один из них - «путешественник» отправляется в космический полёт (где скорость движения ракет околосветовая), второй - «домосед» остаётся на Земле. А вопрос-то в чем? - в возрасте братьев!
После космического путешествия останутся они одного возраста, или кто-то из них (и кто именно)станет старше?

Еще в 1905 г. Альбертом Эйнштейном в Специальной Теории Относительности (СТО) был сформулирован эффект релятивистского замедления времени , согласно которому часы, движущиеся относительно инерциальной системы отсчета, идут медленнее неподвижных часов и показывают меньший промежуток времени между событиями. Причем заметно это замедление при околосветовых скоростях.

Именно после выдвижения Эйнштейном СТО французским физиком Полем Ланжевеном был сформулирован «парадокс близнецов» (или иначе "парадокс часов") . Парадокс близнецов (иначе "парадокс часов") – это мысленный эксперимент, с помощью которого пытались объяснить возникшие противоречия в СТО.

Итак, вернемся к братьям –близнецам!

Домоседу должно показаться, что часы движущегося путешественника имеют замедленный ход времени, поэтому при возвращении они должны отстать от часов домоседа.
А с другой стороны, относительно путешественника двигается Земля, поэтому он считает, что отстать должны часы домоседа.

Но, не могут оба брата быть одновременно один старше другого!
Вот в этом и парадокс …

С точки зрения существовавшей на время возникновения «парадокса близнецов» в данной ситуации возникало противоречие.

Однако, парадокса, как такового, в действительности не существует, т.к. надо помнить, что СТО - это теория для инерциальных систем отсчёта! А, система отсчёта по крайней мере одного из близнецов не было инерциальной!

На этапах разгона, торможения или разворота путешественник испытывал ускорения, и поэтому к нему в эти моменты неприменимы положения СТО.

Здесь надо пользоваться Общей Теорией Относительности , где с помощью расчетов доказывается, что:

Вернемся , к вопросу о замедлении времени в полете!
Если свет проходит какой либо путь за время t.
Тогда продолжительность полета корабля для «домоседа» будет Т= 2vt/c

А для «путешественника» на космическом корабле по его часам (основываясь на преобразовании Лоренца) пройдет всего To=Tумноженное на корень квадратный из (1-v2/c2)
В результате, расчеты (в ОТО) величины замедления времени с позиции каждого брата покажут, что брат- путешественник окажется моложе своего брата-домоседа.




Для примера можно просчитать мысленно полёт к звёздной системе Альфа Центавра, удалённой от Земли на расстояние в 4.3 световых года (световой год – расстояние, которое проходит свет за год). Пусть время измеряется в годах, а расстояния в световых годах.

Пусть половину пути космический корабль двигается с ускорением, близким к ускорению свободного падения, а вторую половину - с таким же ускорением тормозит. Проделывая обратный путь, корабль повторяет этапы разгона и торможения.

В этой ситуации время полёта в земной системе отсчёта составит примерно 12 лет, тогда как по часам на корабле пройдёт 7,3 года. Максимальная скорость корабля достигнет 0,95 от скорости света.

За 64 года собственного времени космический корабль с подобным ускорением может совершить путешествие к галактике Андромеды (туда и обратно). На Земле за время такого полёта пройдёт около 5 млн лет.

Рассуждения, проводимые в истории с близнецами, приводят только к кажущемуся логическому противоречию. При любой формулировке «парадокса» полной симметричности между братьями нет.

Важную роль для понимания того, почему время замедляется именно у путешественника, менявшего свою систему отсчёта, играет относительность одновременности событий.

Уже проведенные эксперименты по удлинению времени жизни элементарных частиц и замедлению хода часов при их движении подтверждают теорию относительности.

Это даёт основание утверждать, что замедление времени, описанное в истории с близнецами, произойдёт и при реальном осуществлении этого мысленного эксперимента.

Парадокс близнецов

Затем, в 1921 году простое объяснение, основанное на инвариантности собственного времени, предложил Вольфганг Паули .

Некоторое время «парадокс близнецов» почти не привлекал к себе внимания. В 1956-1959 годах Герберт Дингл выступил с рядом статей , в которых утверждалось, что известные объяснения «парадокса» неверны. Несмотря на ошибочность аргументации Дингла , его работы вызвали многочисленные дискуссии в научных и научно-популярных журналах . В результате появился ряд книг, посвящённых этой теме. Из русскоязычных источников стоит отметить книги , а также статью .

Большинство исследователей не считают «парадокс близнецов» демонстрацией противоречия теории относительности, хотя история появления тех или иных объяснений «парадокса» и придания ему новых форм не прекращается до настоящего времени .

Классификация объяснений парадокса

Объяснить парадокс, подобный «парадоксу близнецов», можно при помощи двух подходов:

1) Выявить происхождение логической ошибки в рассуждениях, которые привели к противоречию; 2) Провести детальные вычисления величины эффекта замедления времени с позиции каждого из братьев.

Первый подход зависит от деталей формулировки парадокса. В разделах «Простейшие объяснения » и «Физическая причина парадокса » будут приведены различные версии «парадокса» и даны объяснения того, почему противоречия на самом деле не возникает.

В рамках второго подхода расчёты показаний часов каждого из братьев проводятся как с точки зрения домоседа (что обычно не представляет труда), так и с точки зрения путешественника. Так как последний менял свою систему отсчёта , возможны различные варианты учёта этого факта. Их условно можно разделить на две большие группы.

К первой группе относятся вычисления на основе специальной теории относительности в рамках инерциальных систем отсчёта. В этом случае этапы ускоренного движения считаются пренебрежимо малыми по сравнению с общим временем полёта. Иногда вводится третья инерциальная система отсчёта, движущаяся навстречу путешественнику, при помощи которой показания его часов «передаются» брату-домоседу. В разделе «Обмен сигналами » будет приведен простейший расчёт, основанный на эффекте Доплера .

Ко второй группе относятся вычисления, учитывающие детали ускоренного движения . В свою очередь, они делятся по признаку использования или неиспользования в них теории гравитации Эйнштейна (ОТО). Расчёты с использованием ОТО основаны на введении эффективного гравитационного поля , эквивалентного ускорению системы, и учёте изменения в нём темпа хода времени. Во втором способе неинерциальные системы отсчёта описываются в плоском пространстве-времени и понятие гравитационного поля не привлекается. Основные идеи этой группы расчётов будут представлены в разделе «Неинерциальные системы отсчёта ».

Кинематические эффекты СТО

При этом, чем короче момент ускорения, тем оно больше, и как следствие больше разница в скорости часов на Земле и космического корабля, если он удалён от Земли в момент изменения скорости. Поэтому ускорением никогда нельзя пренебречь.

Конечно, сама по себе констатация несимметричности братьев не объясняет, почему замедлиться должны часы именно у путешественника, а не у домоседа. Кроме этого, часто возникает непонимание:

«Почему нарушение равноправия братьев в течение столь короткого времени (остановка путешественника) приводит к такому разительному нарушению симметрии?»

Чтобы глубже понять причины несимметричности и следствия, к которым они приводят, необходимо ещё раз выделить ключевые посылки, явно или неявно присутствующие в любой формулировке парадокса. Для этого будем считать, что вдоль траектории движения путешественника в «неподвижной» системе отсчёта, связанной с домоседом, расположены синхронно идущие (в этой системе) часы. Тогда возможна следующая цепочка рассуждений, как бы «доказывающих» противоречивость выводов СТО:

  1. Путешественник, пролетая мимо любых часов, неподвижных в системе домоседа, наблюдает их замедленный ход.
  2. Более медленный темп хода часов означает, что их накопленные показания отстанут от показаний часов путешественника, и при длительном полёте - сколь угодно сильно.
  3. Быстро остановившись, путешественник по-прежнему должен наблюдать отставание часов, расположенных в «точке остановки».
  4. Все часы в «неподвижной» системе идут синхронно, поэтому отстанут и часы брата на Земле, что противоречит выводу СТО.

Итак, почему путешественник на самом деле будет наблюдать отставание своих часов от часов «неподвижной» системы, несмотря на то, что все такие часы с его точки зрения идут медленнее? Наиболее простым объяснением в рамках СТО является то, что синхронизовать все часы в двух инерциальных системах отсчёта невозможно. Рассмотрим это объяснение подробнее.

Физическая причина парадокса

Во время полёта путешественник и домосед находятся в различных точках пространства и не могут сравнивать свои часы непосредственно. Поэтому, как и выше, будем считать, что вдоль траектории движения путешественника в «неподвижной» системе, связанной с домоседом, расставлены одинаковые, синхронно идущие часы, которые может наблюдать путешественник во время полёта. Благодаря процедуре синхронизации в «неподвижной» системе отсчёта введено единое время, определяющее в данный момент «настоящее» этой системы.

После старта путешественник «переходит» в инерциальную систему отсчёта , движущуюся относительно «неподвижной» со скоростью . Этот момент времени принимается братьями за начальный . Каждый из них будет наблюдать замедленный ход часов другого брата.

Однако, единое «настоящее» системы для путешественника перестаёт существовать. В системе отсчёта есть своё «настоящее» (множество синхронизированных часов). Для системы , чем дальше по ходу движения путешественника находятся части системы , тем в более отдалённом «будущем» (с точки зрения «настоящего» системы ) они находятся.

Непосредственно это будущее наблюдать путешественник не может. Это могли бы сделать другие наблюдатели системы , расположенные впереди по движению и имеющие синхронизированное с путешественником время.

Поэтому, хотя все часы в неподвижной системе отсчёта, мимо которых пролетает путешественник, идут с его точки зрения медленнее, из этого не следует , что они отстанут от его часов.

В момент времени , чем дальше впереди по курсу находятся «неподвижные» часы, тем больше их показания с точки зрения путешественника. Когда он достигает этих часов, они не успеют отстать настолько, чтобы скомпенсировать начальное расхождение времени.

Действительно, положим координату путешественника в преобразованиях Лоренца равной . Закон его движения относительно системы имеет вид . Время, прошедшее после начала полёта, по часам в системе меньше, чем в :

Другими словами, время на часах путешественника отстаёт от показаний часов системы . В то же время часы, мимо которых пролетает путешественник, неподвижны в : . Поэтому их темп хода для путешественника выглядит замедленным:

Таким образом:

несмотря на то, что все конкретные часы в системе идут медленнее с точки зрения наблюдателя в , разные часы вдоль его траектории будут показывать время, ушедшее вперед.

Разность темпа хода часов и - эффект относительный, тогда как значения текущих показаний и в одной пространственной точке - носят абсолютный характер. Наблюдатели, находящиеся в различных инерциальных системах отсчёта, но «в одной» пространственной точке, всегда могут сравнить текущие показания своих часов. Путешественник, пролетая мимо часов системы видит, что они ушли вперёд . Поэтому, если путешественник решит остановиться (быстро затормозив), ничего не изменится, и он попадёт в «будущее» системы . Естественно, после остановки темп хода его часов и часов в станет одинаковым. Однако, часы путешественника будут показывать меньшее время чем часы системы , находящиеся в точке остановки. В силу единого времени в системе часы путешественника отстанут от всех часов , в том числе и от часов его брата. После остановки путешественник может вернуться домой. В этом случае весь анализ повторяется. В результате, как в точке остановки и разворота, так и в исходной точке при возвращении путешественник оказывается моложе своего брата-домоседа.

Если же вместо остановки путешественника до его скорости ускорится домосед, то последний «попадёт» в «будущее» системы путешественника. В результате «домосед» окажется моложе «путешественника». Таким образом:

кто изменяет свою систему отсчёта, тот и оказывается моложе.

Обмен сигналами

Вычисление замедления времени с позиции каждого брата можно провести при помощи анализа обмена сигналами между ними. Хотя братья, находясь в различных точках пространства, не могут непосредственно сравнивать показания своих часов, они могут передавать сигналы «точного времени» при помощи световых импульсов или видеотрансляции изображения часов. Понятно, что при этом они наблюдают не «текущее» время на часах брата, а «прошлое», так как сигналу требуется время для распространения от источника к приёмнику.

При обмене сигналами необходимо учитывать эффект Доплера . Если источник удаляется от приёмника, то частота сигнала уменьшается, а когда он приближается - увеличивается:

где - собственная частота излучения, а - частота принимаемого наблюдателем сигнала. Эффект Доплера имеет классическую составляющую и составляющую релятивистскую, непосредственно связанную с замедлением времени. Скорость , входящая в соотношения изменения частоты, является относительной скоростью источника и приёмника.

Рассмотрим ситуацию, в которой братья передают друг другу каждую секунду (по своим часам) сигналы точного времени. Проведём сначала расчёт с позиции путешественника.

Расчёт путешественника

Пока путешественник удаляется от Земли, он, в силу эффекта Доплера , регистрирует уменьшение частоты принимаемых сигналов. Видеотрансляция с Земли выглядит более медленной. После быстрого торможения и остановки путешественник перестаёт удаляться от земных сигналов, и их период сразу оказывается равным его секунде. Темп видеотрансляции становится «естественным», хотя, в силу конечности скорости света, путешественник по-прежнему наблюдает «прошлое» своего брата. Развернувшись и разогнавшись, путешественник начинает «набегать» на идущие ему навстречу сигналы и их частота увеличивается. «Движения брата» на видеотрансляции с этого момента начинают выглядеть для путешественника ускоренными .

Время полёта по часам путешественника в одну сторону равно , и такое же в обратную. Количество принятых «земных секунд» в течение путешествия равно их частоте , умноженной на время. Поэтому при удалении от Земли путешественник получит существенно меньше «секунд»:

а при приближении, наоборот, больше:

Суммарное количество «секунд», полученных с Земли за время , больше, чем переданных на неё:

в точном соответствии с формулой замедления времени.

Расчёт домоседа

Несколько иная арифметика у домоседа. Пока его брат удаляется, он также регистрирует увеличенный период точного времени, передаваемый путешественником. Однако, в отличие от брата, домосед наблюдает такое замедление дольше . Время полёта на расстояние в одну сторону составляет по земным часам . Торможение и разворот путешественника домосед увидит спустя дополнительное время , требуемое свету для прохождения расстояния от точки разворота. Поэтому, только через время от начала путешествия домосед зарегистрирует ускоренную работу часов приближающегося брата:

Время движения света от точки разворота выражается через время полёта к ней путешественника следующим образом (см. рисунок):

Поэтому количество «секунд», полученных от путешественника, до момента его разворота (по наблюдениям домоседа) равно:

Сигналы с повышенной частотой домосед принимает в течение времени (см. рисунок выше), и получает «секунд» путешественника:

Суммарное число полученных «секунд» за время равно:

Таким образом, соотношение для показания часов в момент встречи путешественника () и брата-домоседа () не зависит от того, с чьей точки зрения оно рассчитывается.

Геометрическая интерпретация

, где - гиперболический арксинус

Рассмотрим гипотетический полёт к звёздной системе Альфа Центавра , удалённой от Земли на расстояние в 4,3 световых года . Если время измеряется в годах, а расстояния в световых годах, то скорость света равна единице, а единичное ускорение св.год/год² близко к ускорению свободного падения и примерно равно 9,5 м/c².

Пусть половину пути космический корабль двигается с единичным ускорением, а вторую половину - с таким же ускорением тормозит (). Затем корабль разворачивается и повторяет этапы разгона и торможения. В этой ситуации время полёта в земной системе отсчёта составит примерно 12 лет, тогда как по часам на корабле пройдёт 7,3 года. Максимальная скорость корабля достигнет 0,95 от скорости света.

За 64 года собственного времени космический корабль с единичным ускорением потенциально может совершить путешествие (вернувшись на Землю) к галактике Андромеды , удалённой на 2,5 млн св. лет . На Земле за время такого полёта пройдёт около 5 млн лет. Развивая вдвое большее ускорение (к которому тренированный человек вполне может привыкнуть при соблюдении ряда условий и использования ряда приспособлений, например, анабиоза), можно подумать даже об экспедиции к видимому краю Вселенной (около 14 млрд. св. лет), которая займёт у космонавтов порядка 50 лет; правда, возвратившись из такой экспедиции (через 28 млрд. лет по земным часам), её участники рискуют не застать в живых не то что Землю и Солнце, но даже нашу Галактику. Исходя из этих расчётов, разумный радиус доступности для межзвёздных экспедиций с возвратом не превышает нескольких десятков световых лет, если, конечно, не будут открыты какие-либо принципиально новые физические принципы перемещения в пространстве-времени. Впрочем, обнаружение многочисленных экзопланет даёт основания полагать, что планетные системы встречаются у достаточно большой доли звёзд, поэтому космонавтам будет что исследовать и в этом радиусе (например, планетные системы ε Эридана и Глизе 581).

Расчёт путешественника

Для проведения того же расчёта с позиции путешественника, необходимо задать метрический тензор , соответствующий его неинерциальной системе отсчёта . Относительно этой системы скорость путешественника нулевая, поэтому время на его часах равно

Заметим, что является координатным временем и в системе путешественника отличается от времени системы отсчёта домоседа.

Земные часы свободны, поэтому они движутся вдоль геодезической , определяемой уравнением :

где - символы Кристоффеля , выражающиеся через метрический тензор . При заданном метрическом тензоре неинерциальной системы отсчёта эти уравнения позволяют найти траекторию часов домоседа в системе отсчёта путешественника. Её подстановка в формулу для собственного времени даёт интервал времени, прошедший по «неподвижным» часам:

где - координатная скорость земных часов.

Подобное описание неинерциальных систем отсчёта возможно либо при помощи теории гравитации Эйнштейна , либо без ссылки на последнюю. Детали расчёта в рамках первого способа можно найти, например, в книге Фока или Мёллера . Второй способ рассмотрен в книге Логунова .

Результат всех этих вычислений показывает, что и с точки зрения путешественника его часы отстанут от часов неподвижного наблюдателя. В итоге разница времени путешествия с обеих точек зрения будет одинаковая, и путешественник окажется моложе домоседа. Если длительность этапов ускоренного движения много меньше длительности равномерного полёта, то результат более общих вычислений совпадает с формулой, полученной в рамках инерциальных систем отсчёта.

Выводы

Рассуждения, проводимые в истории с близнецами, приводят только к кажущемуся логическому противоречию. При любой формулировке «парадокса» полной симметричности между братьями нет. Кроме этого, важную роль для понимания того, почему время замедляется именно у путешественника, менявшего свою систему отсчёта, играет относительность одновременности событий.

Расчёт величины замедления времени с позиции каждого брата может быть выполнен как в рамках элементарных вычислений в СТО, так и при помощи анализа неинерциальных систем отсчёта. Все эти вычисления согласуются друг с другом и показывают, что путешественник окажется моложе своего брата-домоседа.

Парадоксом близнецов часто также называют сам вывод теории относительности о том, что один из близнецов состарится сильнее другого. Хотя такая ситуация и необычна, в ней нет внутреннего противоречия. Многочисленные эксперименты по удлинению времени жизни элементарных частиц и замедлению хода макроскопических часов при их движении подтверждают теорию относительности. Это даёт основание утверждать, что замедление времени, описанное в истории с близнецами, произойдёт и при реальном осуществлении этого мысленного эксперимента.

См. также

Примечания

Источники

  1. Эйнштейн А. «К электродинамике движущихся тел », Ann. d. Phys.,1905 b. 17, s. 89, русский перевод в «Эйнштейн А. Собрание научных трудов в четырёх томах. Том 1. Работы по теории относительности 1905-1920.» М.: Наука, 1965.
  2. Langevin P. «L’evolution de l’espace et du temps ». Scientia 10: 31-54. (1911)
  3. Laue M. (1913) "Das Relativit\"atsprinzip ". Wissenschaft (No. 38) (2 ed.). (1913)
  4. Эйнштейн А. «Диалог по поводу возражений против теории относительности », Naturwiss., 6, с.697-702. (1918). русский перевод «А. Эйнштейн, Собрание научных трудов», т. I, М., «Наука» (1965)
  5. Паули В. - «Теория Относительности » М.: Наука, 1991.
  6. Dingle Н. «Relativity and Space travel », Nature 177, 4513 (1956).
  7. Dingle H. «A possible experimental test of Einstein’s Second postulate », Nature 183, 4677 (1959).
  8. Coawford F. «Experimental verification of the clock-paradox in relativity », Nature 179, 4549 (1957).
  9. Darvin S. , «The clock paradox in relativity », Nature 180, 4593 (1957).
  10. Бойер Р. , «Парадокс часов и общая теория относительности », Эйнштейновский сборник, «Наука», (1968).
  11. Campbell W. , «The clock paradox », Canad. Aeronaut. J.4, 9, (1958)
  12. Frey R., Brigham V., «Paradox of the twins », Amer. J. Phys. 25, 8 (1957)
  13. Leffert С. , Donahue T., «Clock paradox and the physics of discontinuous gravitational fields », Amer. J. Phys. 26, 8 (1958)
  14. McMillan E., «The „clock-paradox“ and Space travel », Science, 126, 3270 (1957)
  15. Romer R. , «Twin paradox in special relativity ». Amer. J. Phys. 27, 3 (1957)
  16. Schild, A. «The clock paradox in relativity theory », Amer. Math. Mouthly 66, 1, 1-8 (1959).
  17. Singer S., «Relativity and space travel », Nature 179,4567 (1957)
  18. Скобельцын Д. В. , «Парадокс близнецов в теории относительности », «Наука», (1966).
  19. Гольденблат И. И., «Парадоксы времени в релятивистской механике », М. «Наука», (1972).
  20. Терлецкий Я. П. «Парадоксы теории относительности », М.: Наука (1965)
  21. Угаров В. А. - «Специальная теория относительности » М.: «Наука», (1977)

Специальные и общие теории относительности говорят о том, что у каждого наблюдателя свое время. То есть, грубо говоря, один человек движется и по своим часам определяет одно время, другой человек как-то движется и по своим часам определяет другое время. Безусловно, если эти люди движутся относительно друг друга с небольшими скоростями и ускорениями, они измеряют практически одно и то же время. По нашим часам, которые мы используем, мы это отличие измерить неспособны. Я не исключаю, что если часами, которые измеряют время с точностью до одной секунды за время жизни Вселенной, будут оснащены два человека, то, походив как-то по-разному, они, возможно, увидят какую-то разницу в каком-то n знаке. Однако эти различия слабые.

Специальные и общие теории относительности предсказывают, что эти различия будут существенными, если два товарища друг относительно друга движутся с большими скоростями, ускорениями или вблизи черной дыры. Например, один из них далеко от черной дыры, а другой близко к черной дыре или какому-нибудь сильно гравитирующему телу. Или один покоится, а другой движется с какой-то скоростью относительно него или с большим ускорением. Тогда различия будут существенные. Насколько большие, я не говорю, и это измеряется на эксперименте с высокоточными атомными часами. Люди летают на самолете, потом привозят, сравнивают, что показали часы на земле, что показали часы на самолете и не только. Таких экспериментов множество, все они согласуются с форменными предсказаниями общей и специальной теории относительности. В частности, если один наблюдатель покоится, а другой относительно него движется с постоянной скоростью, то пересчет хода часов от одного к другому задается преобразованиями Лоренца, как пример.

В специальной теории относительности на основе этого есть так называемый парадокс близнецов, который описан во многих книгах. Заключается он в следующем. Вот представьте себе, что у вас есть два близнеца: Ваня и Вася. Скажем, Ваня остался на Земле, а Вася полетел на альфу Центавра и вернулся. Теперь говорится, что относительно Вани Вася двигался с постоянной скоростью. У него время двигалось медленнее. Он вернулся, соответственно, он должен быть моложе. С другой стороны, парадокс формулируется так: теперь, наоборот, относительно Васи (движение с постоянной скоростью относительно) Ваня движется с постоянной скоростью, несмотря на то что он находился на Земле, то есть, когда Вася вернется на Землю, по идее, у Вани часы должны показывать меньше времени. Кто же из них младше? Какое-то логическое противоречие. Совершенная чушь эта специальная теория относительности, получается.

Факт номер раз: сразу нужно понять, что преобразованиями Лоренца можно пользоваться, если переходить из одной инерциальной системы отсчета в другую инерциальную систему отсчета. И эта логика, что у одного время движется медленнее за счет того, что он движется с постоянной скоростью, только на основе преобразования Лоренца. А у нас в данном случае один из наблюдателей почти инерциальный - тот, который находится на Земле. Почти инерциальный, то есть эти ускорения, с которыми Земля движется вокруг Солнца, Солнце движется вокруг центра Галактики и так далее, - это все маленькие ускорения, для данной задачи заведомо можно этим пренебречь. А второй должен слетать на альфу Центавра. Он должен разогнаться, затормозиться, потом опять разогнаться, затормозиться - это все неинерциальные движения. Поэтому такой наивный пересчет сразу не работает.

Как же правильно объяснить этот парадокс близнецов? Он на самом деле достаточно просто объясняется. Для того чтобы сравнивать время жизни двух товарищей, они должны встречаться. Они должны сначала встретиться в первый раз, оказаться в одной точке пространства в одно и то же время, сравнить часы: 0 часов 0 минут 1 января 2001 года. Потом разлететься. Один из них будет двигаться одним образом, у него как-то часы будут тикать. Другой будет двигаться другим образом, и у него как-то своим образом будут тикать часы. Потом они снова встретятся, вернутся в одну и ту же точку в пространстве, но уже в другое время по отношению к первоначальному. В одно и то же время окажутся в одной и той же точке по отношению к каким-нибудь дополнительным часам. Важно следующее: теперь они могут сравнить часы. У одного натикало столько-то, у другого натикало столько-то. Как это объясняется?

Представьте эти две точки в пространстве и времени, где они встречались в начальный момент и в конечный момент, в момент отлета на альфу Центавра, в момент прилета с альфы Центавра. Один из них двигался инерциально, будем считать для идеала, то есть он двигался по прямой. Второй из них двигался неинерциально, поэтому он в этом пространстве и времени двигался по какой-то кривой - ускорялся, замедлялся и так далее. Так вот одна из этих кривых обладает свойством экстремальности. Ясно, что среди всех возможных кривых в пространстве и времени прямая является экстремальной, то есть она имеет экстремальную длину. Наивно, кажется, что она должна иметь наименьшую длину, потому что на плоскости среди всех кривых наименьшую длину между двумя точками имеет прямая. В пространстве и времени Минковского у него так устроена метрика, так устроен способ измерения длин, прямая имеет наидлиннейшую длину, как это ни странно звучит. Прямая имеет самую большую длину. Поэтому тот, который двигался инерциально, оставался на Земле, измерит больший промежуток времени, чем тот, который летал на альфу Центавра и вернулся, поэтому он будет старше.

Обычно такие парадоксы придумываются для того, чтобы опровергнуть ту или иную теорию. Придумываются самими же учеными, которые занимаются этой областью науки.

Исходно, когда появляется новая теория, ясное дело, что ее вообще никто не воспринимает, особенно если она противоречит каким-то устоявшимся на тот момент данным. И люди просто сопротивляются, это безусловно, придумывают всякие контраргументы и так далее. Это все проходит тяжелейший процесс. Человек борется за то, чтобы его признали. Это всегда связано с долгими промежутками времени и большой нервотрепкой. Возникают вот такие парадоксы.

Кроме парадокса близнецов есть, например, такой парадокс со стержнем и сараем, так называемое Лоренцево сокращение длин, что если вы стоите и смотрите на стержень, который мимо вас летит с очень высокой скоростью, то он выглядит короче, чем он на самом деле есть в той системе отсчета, в которой он покоится. С этим связан вот такой парадокс. Представьте себе ангар или сквозной сарай, у него две дырки, он какой-то длины, неважно какой. Представьте себе, что на него летит этот стержень, собирается пролететь сквозь него. Сарай в своей системе покоя имеет одну длину, скажем 6 метров. Стержень в своей системе покоя имеет длину 10 метров. Представьте себе, что у них скорость сближения такая, что в системе отсчета сарая стержень сократился до 6 метров. Можно посчитать, какая это скорость, но сейчас неважно, она достаточно близка к скорости света. Стержень сократился до 6 метров. Это значит, что в системе отсчета сарая стрежень в какой-то момент целиком поместится в сарай.

Человек, который стоит в сарае, - вот мимо него летит стержень - в какой-то момент увидит этот стержень, целиком лежащий в сарае. С другой стороны, движение с постоянной скоростью относительное. Соответственно, можно рассматривать, как будто бы стержень покоится, а на него летит сарай. Значит, в системе отсчета стержня сарай сократился, причем сократился он в то же число раз, что и стрежень в системе отсчета сарая. Значит, в системе отсчета стержня сарай сократился до 3,6 метра. Теперь в системе отсчета стержня стержень никак не может поместиться в сарай. В одной системе отсчета он помещается, в другой системе отсчета он не помещается. Чушь какая-то.

Ясное дело, что такая теория не может быть верной, - кажется на первый взгляд. Однако объяснение простое. Когда вы видите стержень и говорите: «Он данной длины», это значит, что к вам поступает сигнал от этого и от этого конца стержня одновременно. То есть, когда я говорю, что стержень поместился в сарай, двигаясь с какой-то скоростью, это значит, что событие совпадения этого конца стержня с этим концом сарая одновременно с событием совпадения этого конца стержня с этим концом сарая. Эти два события одновременны в системе отсчета сарая. Но вы же слышали, наверное, что в теории относительности одновременность относительна. Так вот оказывается, что в системе отсчета стержня эти два события неодновременны. Просто сначала совпадает правый конец стержня с правым концом сарая, потом совпадает левый конец стержня с левым концом сарая через какой-то промежуток времени. Этот промежуток времени как раз равен тому времени, за которое эти 10 метров минус 3,6 метра с этой данной скоростью пролетят конец стержня.

Чаще всего теорию относительности опровергают по той причине, что для нее очень легко придумываются подобные парадоксы. Этих парадоксов существует масса. Есть такая книжка Тейлора и Уилера «Физика пространства-времени», она написана достаточно доступным языком для школьников, где подавляющее большинство этих парадоксов разбираются и объясняются с использованием достаточно простых аргументов и формул, как объясняется тот или иной парадокс в рамках теории относительности.

Можно придумать какой-нибудь способ объяснения каждого данного факта, который выглядит проще, чем тот способ, который предоставляет теория относительности. Однако важным свойством специальной теории относительности является то, что она объясняет не каждый отдельный факт, а всю эту совокупность фактов, вместе взятых. Вот если вы придумали объяснение какого-то одного факта, выделенного из всей этой совокупности, пусть оно объясняет этот факт лучше, чем специальная теория относительности, на ваш взгляд, однако еще нужно проверить, что он и все остальные факты тоже объясняет. А как правило, все эти объяснения, которые звучат более просто, не объясняют всего остального. И надо помнить, что в тот момент, когда придумывается та или иная теория, - это действительно какой-то психологический, научный подвиг. Потому что фактов на этот момент существует один, два или три. И вот человек, основываясь на этом одном или трех наблюдениях, формулирует свою теорию.

В тот момент кажется, что она противоречит всему, что было до того известно, если теория кардинальная. Придумываются вот такие парадоксы, чтобы ее опровергнуть, и так далее. Но, как правило, эти парадоксы объясняются, появляются какие-то новые дополнительные экспериментальные данные, они проверяются, соответствуют ли они этой теории. Также из теории следуют какие-то предсказания. Она же основывается на каких-то фактах, что-то там утверждает, из этого утверждения можно что-то вывести, получить и потом сказать, что если эта теория верна, то должно быть так-то и так-то. Идем, проверяем, так это или не так. Так-то. Значит, теория хороша. И так до бесконечности. В общем-то требуется бесконечно много экспериментов, чтобы подтвердить теорию, но на данный момент в той области, в которой специальная и общая теория относительности применимы, фактов, опровергающих эти теории, не существует.


Top