Числовые ряды понятие сходимости ряда. Основные свойства числовых рядов. Теоремы о рядах с положительными слагаемыми

Основные определения.

Определение. Сумма членов бесконечной числовой последовательности называетсячисловым рядом .

При этом числа
будем называть членами ряда, аu n – общим членом ряда.

Определение. Суммы
,n = 1, 2, … называются частными (частичными) суммами ряда.

Таким образом, возможно рассматривать последовательности частичных сумм ряда S 1 , S 2 , …, S n , …

Определение. Ряд
называетсясходящимся , если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.

Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

Свойства рядов.

1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

2) Рассмотрим два ряда
и
, где С – постоянное число.

Теорема. Если ряд
сходится и его сумма равна
S , то ряд
тоже сходится, и его сумма равна С
S . (C 0)

3) Рассмотрим два ряда
и
.Суммой или разностью этих рядов будет называться ряд
, где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

Теорема. Если ряды
и
сходятся и их суммы равны соответственно
S и , то ряд
тоже сходится и его сумма равна
S + .

Разность двух сходящихся рядов также будет сходящимся рядом.

Сумма сходящегося и расходящегося рядов будет расходящимся рядом.

О сумме двух расходящихся рядов общего утверждения сделать нельзя.

При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.

Критерий Коши.

(необходимые и достаточные условия сходимости ряда)

Для того, чтобы последовательность
была сходящейся, необходимо и достаточно, чтобы для любого
существовал такой номер
N , что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:

.

Доказательство. (необходимость)

Пусть
, тогда для любого числа
найдется номер N такой, что неравенство

выполняется при n>N. При n>N и любом целом p>0 выполняется также неравенство
. Учитывая оба неравенства, получаем:

Необходимость доказана. Доказательство достаточности рассматривать не будем.

Сформулируем критерий Коши для ряда.

Для того, чтобы ряд
был сходящимся необходимо и достаточно, чтобы для любого
существовал номер
N такой, что при n > N и любом p >0 выполнялось бы неравенство

.

Однако, на практике использовать непосредственно критерий Коши не очень удобно. Поэтому как правило используются более простые признаки сходимости:

1) Если ряд
сходится, то необходимо, чтобы общий член u n стремился к нулю. Однако, это условие не является достаточным. Можно говорить только о том, что если общий член не стремится к нулю, то ряд точно расходится. Например, так называемый гармонический ряд является расходящимся, хотя его общий член и стремится к нулю.

Пример. Исследовать сходимость ряда

Найдем
- необходимый признак сходимости не выполняется, значит ряд расходится.

2) Если ряд сходится, то последовательность его частных сумм ограничена.

Однако, этот признак также не является достаточным.

Например, ряд 1-1+1-1+1-1+ … +(-1) n +1 +… расходится, т.к. расходится последовательность его частных сумм в силу того, что

Однако, при этом последовательность частных сумм ограничена, т.к.
при любомn .

Ряды с неотрицательными членами.

При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.

Теорема. Для сходимости ряда
с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены
.

Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда
и
приu n , v n 0 .

Теорема. Если u n v n при любом n , то из сходимости ряда
следует сходимость ряда
, а из расходимости ряда
следует расходимость ряда
.

Доказательство. Обозначим через S n и n частные суммы рядов
и
. Т.к. по условию теоремы ряд
сходится, то его частные суммы ограничены, т.е. при всехn  n  M, где М – некоторое число. Но т.к. u n v n , то S n n то частные суммы ряда
тоже ограничены, а этого достаточно для сходимости.

Пример. Исследовать на сходимость ряд

Т.к.
, а гармонический рядрасходится, то расходится и ряд
.

Пример.

Т.к.
, а ряд
сходится (как убывающая геометрическая прогрессия), то ряд
тоже сходится.

Также используется следующий признак сходимости:

Теорема. Если
и существует предел
, где
h – число, отличное от нуля, то ряды
и
ведут одинаково в смысле сходимости.

Признак Даламбера.

(Жан Лерон Даламбер (1717 – 1783) – французский математик)

Если для ряда
с положительными членами существует такое число
q <1, что для всех достаточно больших n выполняется неравенство

то ряд
сходится, если же для всех достаточно больших
n выполняется условие

то ряд
расходится.

Предельный признак Даламбера.

Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.

Если существует предел
, то при
< 1 ряд сходится, а при > 1 – расходится. Если = 1, то на вопрос о сходимости ответить нельзя.

Пример. Определить сходимость ряда .

Вывод: ряд сходится.

Пример. Определить сходимость ряда

Вывод: ряд сходится.

Признак Коши. (радикальный признак)

Если для ряда
с неотрицательными членами существует такое число
q <1, что для всех достаточно больших n выполняется неравенство

,

то ряд
сходится, если же для всех достаточно больших
n выполняется неравенство

то ряд
расходится.

Следствие. Если существует предел
, то при<1 ряд сходится, а при >1 ряд расходится.

Пример. Определить сходимость ряда
.

Вывод: ряд сходится.

Пример. Определить сходимость ряда
.

Т.е. признак Коши не дает ответа на вопрос о сходимости ряда. Проверим выполнение необходимых условий сходимости. Как было сказано выше, если ряд сходится, то общий член ряда стремится к нулю.

,

таким образом, необходимое условие сходимости не выполняется, значит, ряд расходится.

Интегральный признак Коши.

Если (х) – непрерывная положительная функция, убывающая на промежутке и
то интегралы
и
ведут себя одинаково в смысле сходимости.

Знакопеременные ряды.

Знакочередующиеся ряды.

Знакочередующийся ряд можно записать в виде:

где

Признак Лейбница.

Если у знакочередующегося ряда абсолютные величины u i убывают
и общий член стремится к нулю
, то ряд сходится.

Абсолютная и условная сходимость рядов.

Рассмотрим некоторый знакопеременный ряд (с членами произвольных знаков).

(1)

и ряд, составленный из абсолютных величин членов ряда (1):

(2)

Теорема. Из сходимости ряда (2) следует сходимость ряда (1).

Доказательство. Ряд (2) является рядом с неотрицательными членами. Если ряд (2) сходится, то по критерию Коши для любого >0 существует число N, такое, что при n>N и любом целом p>0 верно неравенство:

По свойству абсолютных величин:

То есть по критерию Коши из сходимости ряда (2) следует сходимость ряда (1).

Определение. Ряд
называетсяабсолютно сходящимся , если сходится ряд
.

Очевидно, что для знакопостоянных рядов понятия сходимости и абсолютной сходимости совпадают.

Определение. Ряд
называетсяусловно сходящимся , если он сходится, а ряд
расходится.

Признаки Даламбера и Коши для знакопеременных рядов.

Пусть
- знакопеременный ряд.

Признак Даламбера. Если существует предел
, то при<1 ряд
будет абсолютно сходящимся, а при>

Признак Коши. Если существует предел
, то при<1 ряд
будет абсолютно сходящимся, а при>1 ряд будет расходящимся. При =1 признак не дает ответа о сходимости ряда.

Свойства абсолютно сходящихся рядов.

1) Теорема. Для абсолютной сходимости ряда
необходимо и достаточно, чтобы его можно было представить в виде разности двух сходящихся рядов с неотрицательными членами
.

Следствие. Условно сходящийся ряд является разностью двух расходящихся рядов с неотрицательными стремящимися к нулю членами.

2) В сходящемся ряде любая группировка членов ряда, не изменяющая их порядка, сохраняет сходимость и величину ряда.

3) Если ряд сходится абсолютно, то ряд, полученный из него любой перестановкой членов, также абсолютно сходится и имеет ту же сумму.

Перестановкой членов условно сходящегося ряда можно получить условно сходящийся ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд.

4) Теорема. При любой группировке членов абсолютно сходящегося ряда (при этом число групп может быть как конечным, так и бесконечным и число членов в группе может быть как конечным, так и бесконечным) получается сходящийся ряд, сумма которого равна сумме исходного ряда .

5) Если ряды исходятся абсолютно и их суммы равны соответственноS и , то ряд, составленный из всех произведений вида
взятых в каком угодно порядке, также сходится абсолютно и его сумма равнаS  - произведению сумм перемножаемых рядов.

Если же производить перемножение условно сходящихся рядов, то в результате можно получить расходящийся ряд.

Функциональные последовательности.

Определение. Если членами ряда будут не числа, а функции от х , то ряд называется функциональным .

Исследование на сходимость функциональных рядов сложнее исследования числовых рядов. Один и тот же функциональный ряд может при одних значениях переменной х сходиться, а при других – расходиться. Поэтому вопрос сходимости функциональных рядов сводится к определению тех значений переменной х , при которых ряд сходится.

Совокупность таких значений называется областью сходимости .

Так как пределом каждой функции, входящей в область сходимости ряда, является некоторое число, то пределом функциональной последовательности будет являться некоторая функция:

Определение. Последовательность {f n (x ) } сходится к функции f (x ) на отрезке , если для любого числа >0 и любой точки х из рассматриваемого отрезка существует номер N = N(, x), такой, что неравенство

выполняется при n>N.

При выбранном значении >0 каждой точке отрезка соответствует свой номер и, следовательно, номеров, соответствующих всем точкам отрезка , будет бесчисленное множество. Если выбрать из всех этих номеров наибольший, то этот номер будет годиться для всех точек отрезка , т.е. будет общим для всех точек.

Определение. Последовательность {f n (x ) } равномерно сходится к функции f (x ) на отрезке , если для любого числа >0 существует номер N = N(), такой, что неравенство

выполняется при n>N для всех точек отрезка .

Пример. Рассмотрим последовательность

Данная последовательность сходится на всей числовой оси к функции f (x )=0 , т.к.

Построим графики этой последовательности:

sinx


Как видно, при увеличении числа n график последовательности приближается к оси х .

Функциональные ряды.

Определение. Частными (частичными) суммами функционального ряда
называются функции

Определение. Функциональный ряд
называетсясходящимся в точке (х=х 0 ), если в этой точке сходится последовательность его частных сумм. Предел последовательности
называетсясуммой ряда
в точкех 0 .

Определение. Совокупность всех значений х , для которых сходится ряд
называетсяобластью сходимости ряда.

Определение. Ряд
называетсяравномерно сходящимся на отрезке , если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

Теорема. (Критерий Коши равномерной сходимости ряда)

Для равномерной сходимости ряда
необходимо и достаточно, чтобы для любого числа
>0 существовал такой номер N (), что при n > N и любом целом p >0 неравенство

выполнялось бы для всех х на отрезке [ a , b ].

Теорема. (Признак равномерной сходимости Вейерштрасса)

(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)

Ряд
сходится равномерно и притом абсолютно на отрезке [
a , b ], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами:

т.е. имеет место неравенство:

.

Еще говорят, что в этом случае функциональный ряд
мажорируется числовым рядом
.

Пример. Исследовать на сходимость ряд
.

Так как
всегда, то очевидно, что
.

При этом известно, что общегармонический ряд при=3>1 сходится, то в соответствии с признаком Вейерштрасса исследуемый ряд равномерно сходится и притом в любом интервале.

Пример. Исследовать на сходимость ряд .

На отрезке [-1,1] выполняется неравенство
т.е. по признаку Вейерштрасса на этом отрезке исследуемый ряд сходится, а на интервалах (-, -1)  (1, ) расходится.

Свойства равномерно сходящихся рядов.

1) Теорема о непрерывности суммы ряда.

Если члены ряда
- непрерывные на отрезке [
a , b ] функции и ряд сходится равномерно, то и его сумма S (x ) есть непрерывная функция на отрезке [ a , b ].

2) Теорема о почленном интегрировании ряда.

Равномерно сходящийся на отрезке [ a , b ] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [ a , b ] , сходится к интегралу от суммы ряда по этому отрезку .

3) Теорема о почленном дифференцировании ряда.

Если члены ряда
сходящегося на отрезке [
a , b ] представляют собой непрерывные функции, имеющие непрерывные производные, и ряд, составленный из этих производных
сходится на этом отрезке равномерно, то и данный ряд сходится равномерно и его можно дифференцировать почленно.

На основе того, что сумма ряда является некоторой функцией от переменной х , можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями.

На практике часто применяется разложение функций в степенной ряд.

Степенные ряды.

Определение. Степенным рядом называется ряд вида

.

Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.

Пример. Исследовать на сходимость ряд

Применяем признак Даламбера:

.

Получаем, что этот ряд сходится при
и расходится при
.

Теперь определим сходимость в граничных точках 1 и –1.

При х = 1:
ряд сходится по признаку Лейбница (см. Признак Лейбница. ).

При х = -1:
ряд расходится (гармонический ряд).

Теоремы Абеля.

(Нильс Хенрик Абель (1802 – 1829) – норвежский математик)

Теорема. Если степенной ряд
сходится при
x = x 1 , то он сходится и притом абсолютно для всех
.

Доказательство. По условию теоремы, так как члены ряда ограничены, то

где k - некоторое постоянное число. Справедливо следующее неравенство:

Из этого неравенства видно, что при x < x 1 численные величины членов нашего ряда будут меньше (во всяком случае не больше) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии по условию теоремы меньше единицы, следовательно, эта прогрессия представляет собой сходящийся ряд.

Поэтому на основании признака сравнения делаем вывод, что ряд
сходится, а значит ряд
сходится абсолютно.

Таким образом, если степенной ряд
сходится в точкех 1 , то он абсолютно сходится в любой точке интервала длины 2с центром в точкех = 0.

Следствие. Если при х = х 1 ряд расходится, то он расходится для всех
.

Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что
ряд абсолютно сходится, а при всех
ряд расходится. При этом числоR называется радиусом сходимости . Интервал (-R, R) называется интервалом сходимости .

Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым.

Радиус сходимости может быть найден по формуле:

Пример. Найти область сходимости ряда

Находим радиус сходимости
.

Следовательно, данный ряд сходится прилюбом значении х . Общий член этого ряда стремится к нулю.

Теорема. Если степенной ряд
сходится для положительного значениях=х 1 , то он сходится равномерно в любом промежутке внутри
.

Действия со степенными рядами.

Основные определения

Определение. Сумма членов бесконечной числовой последовательности называется числовым рядом.

При этом числа будем называть членами ряда, а un - общим членом ряда.

Определение. Суммы, n = 1, 2, … называются частными (частичными) суммами ряда.

Таким образом, возможно рассматривать последовательности частичных сумм ряда S1, S2, …,Sn, …

Определение. Ряд называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда - предел последовательности его частных сумм.

Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

Свойства рядов

1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

2) Рассмотрим два ряда и, где С - постоянное число.

Теорема. Если ряд сходится и его сумма равна S, то ряд тоже сходится, и его сумма равна СS. (C 0)

3) Рассмотрим два ряда и. Суммой или разностью этих рядов будет называться ряд, где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

Теорема. Если ряды и сходятся и их суммы равны соответственно S и, то ряд тоже сходится и его сумма равна S + .

Разность двух сходящихся рядов также будет сходящимся рядом.

Сумма сходящегося и расходящегося рядов будет расходящимся рядом.

О сумме двух расходящихся рядов общего утверждения сделать нельзя.

При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.

Критерий Коши.

(необходимые и достаточные условия сходимости ряда)

Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы для любого существовал такой номер N, что при n > N и любом p > 0, где р - целое число, выполнялось бы неравенство:

Доказательство. (необходимость)

Пусть, тогда для любого числа найдется номер N такой, что неравенство

выполняется при n>N. При n>N и любом целом p>0 выполняется также неравенство. Учитывая оба неравенства, получаем:

Необходимость доказана. Доказательство достаточности рассматривать не будем.

Сформулируем критерий Коши для ряда.

Для того, чтобы ряд был сходящимся необходимо и достаточно, чтобы для любого существовал номер N такой, что при n>N и любом p>0 выполнялось бы неравенство

Однако, на практике использовать непосредственно критерий Коши не очень удобно. Поэтому, как правило, используются более простые признаки сходимости:

1) Если ряд сходится, то необходимо, чтобы общий член un стремился к нулю. Однако, это условие не является достаточным. Можно говорить только о том, что если общий член не стремится к нулю, то ряд точно расходится. Например, так называемый гармонический ряд является расходящимся, хотя его общий член и стремится к нулю.

Пример. Исследовать сходимость ряда

  • - необходимый признак сходимости не выполняется, значит ряд расходится.
  • 2) Если ряд сходится, то последовательность его частных сумм ограничена.

Однако, этот признак также не является достаточным.

Например, ряд 1-1+1-1+1-1+ … +(-1)n+1+… расходится, т.к. расходится последовательность его частных сумм в силу того, что

Однако, при этом последовательность частных сумм ограничена, т.к. при любом n.

1. Основные понятия. Пусть дана бесконечная последовательность чисел

Определение. Выражение

где - общий член ряда.

Пример 7.1

Рассмотрим ряд . Здесь - общий член ряда.

Рассмотрим суммы, составленные из конечного числа членов ряда (7.1): , , , ..., , . . . Такие суммы называются частичны­ми суммами ряда. называется -ой частичной суммой ряда. Таким образом, частичная сумма это сумма (конечного числа) слагаемых:

. (7.3)

Последовательность , , , ..., , ... или .называется последовательностью частичных сумм ряда (7.1).

Определение. Если существует конечный предел , то ряд (1.1) называется сходящимся, а число - суммой этого ряда. В этом случае пишут ­

Если последовательность не имеет предела, то ряд (7.1) называется расходящимся. Расходящийся ряд суммы не имеет.

Пример 7.2

Решение

Общий член ряда можно представить в виде

, (n = 1, 2, 3, . . .).

Следовательно, данный ряд сходится, и его сумма равна 1.

Пример 7.3 (геометрическая прогрессия)

Рассмотрим последовательность, каждый член которой, начиная со второго, получается в результате умножения предыдущего члена на одно и то же число:

Иногда сам ряд (7.5) называют геометрической прогрессией.

Частичная сумма ряда (7.5) представляет собой сумму членов геометрической прогрессии и

вычисляется по формуле

. (7.6)

Если , тогда . Следовательно, при ряд (7.5) сходится. Если , тогда . Следовательно, при ряд (7.5) расходится. Если , тогда (7.5) превращается в ряд 1 + 1 + 1 + ... + 1 + ... . Для такого ряда и

Следовательно, при ряд (7.5) расходится.

При рассмотрении рядов, важным является вопрос о сходимости (расходимости). Для решения этого вопроса в примерах 7.1 и 7.2 использовалось определение сходимости. Чаще для этого используются определенные свойства ряда, которые называются признаками сходимости ряда.

Теорема 7.1 (необходимый признак сходимости). Если ряд (7.1) сходится, то его общий член стремится к нулю при неограниченном возрастании , т. е.

Ряд (7.8) называется гармоническим рядом.

Для этого ряда . Однако, никакого вывода о сходимости ряда (7.8) пока сделать нельзя, так как утверждение, обратное теореме 7.1, не является верным.

Покажем, что ряд (7.8) расходится. Это можно установить рассуждениями от противного. Предположим, что ряд (7.8) сходится, и его сумма равна S .Тогда = –

– , что противоречит неравенству

Следовательно, гармонический ряд расходится.

Необходимым признаком можно воспользоваться для установления факта расходимости ряда. Действительно, из теоремы 7.1 следует, что если общий член ряда не стремится к нулю, то ряд расходится.

Пример 7.5

Рассмотрим ряд .

Здесь , . Предел не равен нулю, следовательно, ряд расходится.

Таким образом, если выполняется условие (7.7), вопрос о сходимости ряда (7.1) остается открытым. Ряд может расходиться, а может и сходиться. Для решения этого вопроса могут

быть использованы свойства ряда, из которых следует сходимость этого ряда. Такие свойства называются достаточными признаками сходимости рядов.

Ряды с положительными членами. Рассмотри достаточные признаки сходимости рядов с положительными членами.

Теорема 7.2 .(Признак Даламбера).

положительны :

1) если , ряд (7.1) сходится;

2) если , ряд (7.1) сходится;

Примечание. Ряд (7.1) будет расходиться и в том случае, когда , так как тогда, начиная с некоторого номера N, будет и, значит, не стремится к нулю при .


Пример 7.6

Исследовать на сходимость ряд .

Решение . , , тогда =

Найденный предел меньше единицы. Следовательно, данный ряд сходится.

Пример 7.7

Исследовать на сходимость ряд .

Решение . , , тогда =

= = = = = = = .

Найденный предел больше единицы. Следовательно, данный ряд расходится.

Теорема 7.3 .(Радикальный признак Коши).

Пусть дан ряд (7.1), все члены которого положительны :

и существует предел

, (7.11)

(где обозначение найденного предела). Тогда:

1) если , ряд (7.1) сходится;

2) если , ряд (7.1) сходится;

3) если , рассматриваемый признак не дает ответа на вопрос о сходимости ряда.

Доказательство признака можно найти в .

Пример 7.8

Исследовать на сходимость ряд .

Решение .

Найдем предел (7.11):

Найденный предел больше единицы. Следовательно, данный ряд расходится (теорема 7.3).

Обобщенный гармонический ряд. Обобщенным гармоническим рядом называется ряд вида

Теорема 7.3 . (теорема Лейбница). Если для ряда (7.13) выполняются два условия:

1) члены ряда по абсо­лютной величине монотонно убывают :

2) общий член ряда стремится к нулю :

то ряд (7.13) сходится.

Доказательство признака можно найти, например, в .

Пример 7.9.

Рассмотрим знакочередующийся ряд

(7.14)

Для этого ряда условия теоремы (7.13) выполнены:

Следовательно, ряд (7.12) сходится.

Следствие из теоремы 7.3. Остаток знакочередующегося ряда (7.13), удов­летворяющего условиям теоремы Лейбница, имеет знак своего первого члена и меньше его по абсолютной величине.

Пример 7.10. Вычислить с точностью до 0,1 сумму сходящегося ряда

В качестве приближенного значения суммы ряда мы должны взять ту частичную сумму , для которой . Согласно следствию, . Следовательно, достаточно положить , т. е. , тогда

Отсюда с точностью до 0,1.

Абсолютная и условная сходимость . Рассмотрим ряд, члены которого имеют произвольные знаки

Отметим, что ряд (7.16) является рядом с положительными членами и для него применимы соответствующие теоремы, приведенные выше.

Теорема 7.4 (Признак абсолютной сходимости). Если сходится ряд (7.16) , то сходится и ряд (7.15).

(Доказательство теоремы можно найти, например, в ).

Определение.

Если сходится ряд (7.16), то соответствующий ряд (7.15) называется абсолютно сходящимся абсолютно сходящим ся.

Может оказаться, что ряд (7.16) расходится, а ряд (7.15) сходится. В этом случае ряд (7.15) называется условно сходящимся .

Отметим, что знакочередующийся ряд (7.13) является частным случаем ряда, члены которого имеют произвольные знаки. Поэтому для исследования знакочередующегося ряда также можно применить теорему 7.5.

Пример 7.11

Решение

Рассмотрим ряд, составленный из абсолютных величин членов данного ряда . Этот ряд сходится, т. к. это обобщенный гармонический ряд (7.12) со значением Следовательно, по признаку абсолютной сходимости (теорема 7.5) исходный ряд сходится абсолютно.

Пример 7.12

Ряд исследовать на сходимость.

Решение

по теореме Лейбница сходится, но ряд, составленный из абсолютных величин членов исходного ряда, расходится (это гармонический ряд). Следовательно, исходный ряд сходится условно.

1. Если сходится а 1 +а 2 +а 3 +…+а n +…=, то сходится и ряд а m+1 +а m+2 +а m+3 +…, полученный из данного ряда отбрасыванием первых m членов. Этот полученный ряд называется m-ым остатком ряда. И, наоборот: из сходимости m-го остатка ряда вытекает сходимость данного ряда. Т.е. сходимость и расходимость ряда не нарушается, если прибавить или отбросить конечное число его членов.

2 . Если ряд а 1 +а 2 +а 3 +… сходится и его сумма равна S, то ряд Са 1 +Са 2 +…, где С= так же сходится и его сумма равна СS.

3. Если ряды а 1 +а 2 +… и b 1 +b 2 +… сходятся и их суммы равны соответственно S1 и S2, то ряды (а 1 +b 1)+(а 2 +b 2)+(а 3 +b 3)+… и (а 1 -b 1)+(а 2 -b 2)+(а 3 -b 3)+… также сходятся. Их суммы соответственно равны S1+S2 и S1-S2.

4. а). Если ряд сходится, то его n-ый член стремится к 0 при неограниченном возрастании n (обратное утверждение неверно).

- необходимый признак (условие) сходимости ряда .

б). Если
то ряд расходящийся –достаточное условие расходимости ряда .

-ряды такого вида исследуются только по 4 свойству. Это расходящиеся ряды.

Знакоположительные ряды.

Признаки сходимости и расходимости знакоположительных рядов.

Знакоположительные ряды это ряды, все члены которых положительные. Эти признаки сходимости и расходимости мы будем рассматривать для знакоположительных рядов.

1. Первый признак сравнения.

Пусть даны два знакоположительных ряда а 1 +а 2 +а 3 +…+а n +…=(1) иb 1 +b 2 +b 3 +…+b n +…=(2).

Если члены ряда (1) не больше b n и ряд (2) сходится , то и ряд (1) также сходится.

Если члены ряда (1) не меньше соответствующих членов ряда (2), т.е. а n b n и ряд (2) расходится , то и ряд (1) также расходится.

Этот признак сравнения справедлив, если неравенство выполняется не для всех n, а лишь начиная с некоторого.

2. Второй признак сравнения.

Если существует конечный и отличный от нуля предел
, то оба ряда сходятся или расходятся одновременно.

-ряды такого вида расходятся по второму признаку сравнения. Их надо сравнивать с гармоническим рядом.

3. Признак Даламбера.

Если для знакоположительного ряда (а 1 +а 2 +а 3 +…+а n +…=) существует
(1), то ряд сходится, если q<1, расходится, если q>

4. Признак Коши радикальный.

Если для знакоположительного ряда существует предел
(2), то ряд сходится, еслиq<1, расходится, если q>1. Если q=1 то вопрос остается открытым.

5. Признак Коши интегральный.

Вспомним несобственные интегралы.

Если существует предел
. Это есть несобственный интеграл и обозначается
.

Если этот предел конечен, то говорят, что несобственный интеграл сходится. Ряд, соответственно, сходится или расходится.

Пусть ряд а 1 +а 2 +а 3 +…+а n +…=- знакоположительный ряд.

Обозначим a n =f(x) и рассмотрим функцию f(x). Если f(x)- функция положительная, монотонно убывающая и непрерывная, то, если несобственный интеграл сходится, то и данный ряд сходится. И наоборот: если несобственный интеграл расходится, то и ряд расходится.

Если ряд конечен, то он сходится.

Очень часто встречаются ряды
-ряд Дерихле . Он сходится, если p>1, расходится p<1. Гармонический ряд является рядом Дерихле при р=1. Сходимость и расходимость данного ряда легко доказать с помощью интегрального признака Коши.

Пусть задана бесконечная числовая последовательность

Определение 1.1 . Числовым рядом или просто рядом называется выражение (сумма) вида

Числа называются членами ряда , - общим или n-м членом ряда.

Чтобы задать ряд (1.1) достаточно задать функцию натурального аргумента вычисления -го члена ряда по его номеру

Из членов ряда (1.1) образуем числовую последовательность частичных сумм где - сумма первых членов ряда, которая называется n -й частичной суммой , т.е.

…………………………….

…………………………….

Числовая последовательность при неограниченном возрастании номера может:

1) иметь конечный предел;

2) не иметь конечного предела (предел не существует или равен бесконечности).

Определение 1.2 . Ряд (1.1) называется сходящимся, если последовательность его частичных сумм (1.5) имеет конечный предел, т.е.

В этом случае число называется суммой ряда (1.1) и обозначается

Определение 1.3. Ряд (1.1) называется расходящимся, если последовательность его частичных сумм не имеет конечного предела.

Расходящемуся ряду не приписывают никакой суммы.

Таким образом, задача нахождения суммы сходящегося ряда (1.1) равносильна вычислению предела последовательности его частичных сумм.

Основные свойства числовых рядов

Свойства суммы конечного числа слагаемых отличаются от свойств ряда, т.е. суммы бесконечного числа слагаемых. Так, в случае конечного числа слагаемых их можно группировать в каком угодно порядке, от этого сумма не изменится. Существуют сходящиеся ряды (условно сходящиеся), для которых, как показал Риман Георг Фридрих Бернхард, меняя надлежащим образом порядок следования их членов, можно сделать сумму ряда равной какому угодно числу, и даже расходящийся ряд.

Пример 2.1. Рассмотрим расходящийся ряд вида

Сгруппировав его члены попарно, получим сходящийся числовой ряд с суммой, равной нулю:

С другой стороны, сгруппировав его члены попарно, начиная со второго члена, получим также сходящийся ряд, но уже с суммой, равной единице:

Сходящиеся ряды обладают некоторыми свойствами, которые позволяют действовать с ними, как с конечными суммами. Так их можно умножать на числа, почленно складывать и вычитать. У них можно объединять в группы любые рядом стоящие слагаемые.

Теорема 2.1. (Необходимый признак сходимости ряда).

Если ряд (1.1) сходится, то его общий член стремится к нулю при неограниченном возрастании n, т.е.

Доказательство теоремы следует из того, что, и если

S - сумма ряда (1.1), то

Условие (2.1) является необходимым, но недостаточным условием для сходимости ряда. Т. е., если общий член ряда стремится к нулю при, то это не значит, что ряд сходится. Например, для гармонического ряда (1.2) однако он расходится.

Следствие (Достаточный признак расходимости ряда).

Если общий член ряда не стремится к нулю при, то этот ряд расходится.

Свойство 2.1. Сходимость или расходимость ряда не изменится, если произвольным образом удалить из него, добавить к нему, переставить в нем конечное число членов (при этом для сходящегося ряда его сумма может измениться).

Доказательство свойства следует из того, что ряд (1.1) и любой его остаток сходятся или расходятся одновременно.

Свойство 2.2. Сходящийся ряд можно умножать на число, т.е., если ряд (1.1) сходится, имеет сумму S и c - некоторое число, тогда

Доказательство следует из того, что для конечных сумм справедливы равенства

Свойство 2.3. Сходящиеся ряды можно почленно складывать и вычитать, т.е. если ряды,

сходятся,

сходится и его сумма равна т.е.

Доказательство следует из свойств предела конечных сумм, т.е.

Признак сравнения

Пусть даны два положительных ряда

и выполняются условия для всех n=1,2,…

Тогда: 1) из сходимости ряда (3.2) следует сходимость ряда (3.1);

2) из расходимости ряда (3.1) следует расходимость ряда (3.2).

Доказательство . 1. Пусть ряд (3.2) сходится и его сумма равна В. Последовательность частичных сумм ряда (3.1) является неубывающей ограниченной сверху числом В, т.е.

Тогда в силу свойств таких последовательностей следует, что она имеет конечный предел, т.е. ряд (3.1) сходится.

2. Пусть ряд (3.1) расходится. Тогда, если ряд (3.2) сходится, то в силу доказанного выше пункта 1 сходился бы и исходный ряд, что противоречит нашему условию. Следовательно ряд (3.2) также расходится.

Этот признак удобно применять к определению сходимости рядов, сравнивая их с рядами, сходимость которых уже известна.

Признак Даламбера

Тогда: 1) при q < 1 ряд (1.1) сходится;

2) при q > 1 ряд (1.1) расходится;

Замечание: Ряд (1.1) будет расходиться и в том случае, когда

Признак Коши

Пусть члены положительного ряда (1.1) таковы, что существует предел

Тогда: 1) при q < 1 ряд (1.1) сходится;

2) при q > 1 ряд (1.1) расходится;

3) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.

Интегральный признак Коши - Маклорена

Пусть функция f(x) непрерывная неотрицательная невозрастающая функция на промежутке

Тогда ряд и несобственный интеграл сходятся или расходятся одновременно.


Top