Многомерные марковские процессы. Элементы теории массового обслуживания. Для марковских цепей с дискретным временем

Эволюция которого после любого заданного значения временно́го параметра t {\displaystyle t} не зависит от эволюции, предшествовавшей t {\displaystyle t} , при условии, что значение процесса в этот момент фиксировано («будущее» процесса не зависит от «прошлого» при известном «настоящем»; другая трактовка (Вентцель): «будущее» процесса зависит от «прошлого» лишь через «настоящее»).

Энциклопедичный YouTube

    1 / 3

    ✪ Лекция 15: Марковские случайные процессы

    ✪ Происхождение марковских цепей

    ✪ Обобщенная модель марковского процесса

    Субтитры

История

Определяющее марковский процесс свойство принято называть марковским; впервые оно было сформулировано А. А. Марковым , который в работах 1907 г. положил начало изучению последовательностей зависимых испытаний и связанных с ними сумм случайных величин. Это направление исследований известно под названием теории цепей Маркова .

Основы общей теории марковских процессов с непрерывным временем были заложены Колмогоровым .

Марковское свойство

Общий случай

Пусть (Ω , F , P) {\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P})} - вероятностное пространство с фильтрацией (F t , t ∈ T) {\displaystyle ({\mathcal {F}}_{t},\ t\in T)} по некоторому (частично упорядоченному) множеству T {\displaystyle T} ; и пусть (S , S) {\displaystyle (S,{\mathcal {S}})} - измеримое пространство . Случайный процесс X = (X t , t ∈ T) {\displaystyle X=(X_{t},\ t\in T)} , определённый на фильтрованном вероятностном пространстве, считается удовлетворяющим марковскому свойству , если для каждого A ∈ S {\displaystyle A\in {\mathcal {S}}} и s , t ∈ T: s < t {\displaystyle s,t\in T:s,

P (X t ∈ A | F s) = P (X t ∈ A | X s) . {\displaystyle \mathbb {P} (X_{t}\in A|{\mathcal {F}}_{s})=\mathbb {P} (X_{t}\in A|X_{s}).}

Марковский процесс - это случайный процесс, удовлетворяющий марковскому свойству с естественной фильтрацией .

Для марковских цепей с дискретным временем

В случае, если S {\displaystyle S} является дискретным множеством и T = N {\displaystyle T=\mathbb {N} } , определение может быть переформулировано:

P (X n = x n | X n − 1 = x n − 1 , X n − 2 = x n − 2 , … , X 0 = x 0) = P (X n = x n | X n − 1 = x n − 1) {\displaystyle \mathbb {P} (X_{n}=x_{n}|X_{n-1}=x_{n-1},X_{n-2}=x_{n-2},\dots ,X_{0}=x_{0})=\mathbb {P} (X_{n}=x_{n}|X_{n-1}=x_{n-1})} .

Пример марковского процесса

Рассмотрим простой пример марковского случайного процесса. По оси абсцисс случайным образом перемещается точка. В момент времени ноль точка находится в начале координат и остается там в течение одной секунды. Через секунду бросается монета - если выпал герб, то точка X перемещается на одну единицу длины вправо, если цифра - влево. Через секунду снова бросается монета и производится такое же случайное перемещение, и так далее. Процесс изменения положения точки («блуждания ») представляет собой случайный процесс с дискретным временем (t=0, 1, 2, …) и счетным множеством состояний. Такой случайный процесс называется марковским, так как следующее состояние точки зависит только от настоящего (текущего) состояния и не зависит от прошлых состояний (неважно, каким путём и за какое время точка попала в текущую координату).

Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели (до этого нами рассматривались детерминированные математические модели). Напомним, что:

Детерминированная математическая модель отражает поведение объекта (системы, процесса) с позицийполной определенности в настоящем и будущем.

Вероятностная математическая модель учитывает влияние случайных факторов на поведение объекта (системы, процесса) и, следовательно, оценивает будущее с позиций вероятности тех или иных событий.

Т.е. здесь как, например, в теории игр задачи рассматриваются в условиях неопределенности .

Рассмотрим сначала некоторые понятия, которые характеризуют «стохастическую неопределенность», когда неопределенные факторы, входящие в задачу, представляют собой случайные величины (или случайные функции), вероятностные характеристики которых либо известны, либо могут быть получены из опыта. Такую неопределенность называют еще «благоприятной», «доброкачественной».

Понятие случайного процесса

Строго говоря, случайные возмущения присущи любому процессу. Проще привести примеры случайного, чем «неслучайного» процесса. Даже, например, процесс хода часов (вроде бы это строгая выверенная работа – «работает как часы») подвержен случайным изменениям (уход вперед, отставание, остановка). Но до тех пор, пока эти возмущения несущественны, мало влияют на интересующие нас параметры, мы можем ими пренебречь и рассматривать процесс как детерминированный, неслучайный.

Пусть имеется некоторая система S (техническое устройство, группа таких устройств, технологическая система – станок, участок, цех, предприятие, отрасль промышленности и т.д.). В системеS протекаетслучайный процесс , если она с течением времени меняет свое состояние (переходит из одного состояния в другое), причем, заранее неизвестным случайным образом.

Примеры: 1. СистемаS – технологическая система (участок станков). Станки время от времени выходят из строя и ремонтируются. Процесс, протекающий в этой системе, случаен.

2. Система S – самолет, совершающий рейс на заданной высоте по определенному маршруту. Возмущающие факторы – метеоусловия, ошибки экипажа и т.д., последствия – «болтанка», нарушение графика полетов и т.д.

Марковский случайный процесс

Случайный процесс, протекающий в системе, называется Марковским , если для любого момента времениt 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный моментt 0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t 0 система находится в определенном состоянииS 0 . Мы знаем характеристики состояния системы в настоящеми все, что было приt <t 0 (предысторию процесса). Можем ли мы предугадать (предсказать) будущее, т.е. что будет приt >t 0 ? В точности – нет, но какие-то вероятностные характеристики процесса в будущем найти можно. Например, вероятность того, что через некоторое времясистемаS окажется в состоянииS 1 или останется в состоянииS 0 и т.д.

Пример . СистемаS – группа самолетов, участвующих в воздушном бою. Пустьx – количество «красных» самолетов,y – количество «синих» самолетов. К моменту времениt 0 количество сохранившихся (не сбитых) самолетов соответственно –x 0 ,y 0 . Нас интересует вероятность того, что в момент временичисленный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система в момент времениt 0 , а не от того, когда и в какой последовательности погибали сбитые до моментаt 0 самолеты.

На практике Марковские процессы в чистом виде обычно не встречаются. Но имеются процессы, для которых влиянием «предистории» можно пренебречь. И при изучении таких процессов можно применять Марковские модели (в теории массового обслуживания рассматриваются и не Марковские системы массового обслуживания, но математический аппарат, их описывающий, гораздо сложнее).

В исследовании операций большое значение имеют Марковские случайные процессы с дискретными состояниями и непрерывным временем.

Процесс называется процессом с дискретным состоянием , если его возможные состоянияS 1 ,S 2 , … можно заранее определить, и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Процесс называется процессом с непрерывным временем , если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти в любой момент.

Пример . Технологическая система (участок)S состоит из двух станков, каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время. Возможны следующие состояния системы:

S 0 - оба станка исправны;

S 1 - первый станок ремонтируется, второй исправен;

S 2 - второй станок ремонтируется, первый исправен;

S 3 - оба станка ремонтируются.

Переходы системы S из состояния в состояние происходят практически мгновенно, в случайные моменты выхода из строя того или иного станка или окончания ремонта.

При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом состояний . Вершины графа – состояния системы. Дуги графа – возможные переходы из состояния в

Рис.1. Граф состояний системы

состояние. Для нашего примера граф состояний приведен на рис.1.

Примечание. Переход из состояния S 0 вS 3 на рисунке не обозначен, т.к. предполагается, что станки выходят из строя независимо друг от друга. Вероятностью одновременного выхода из строя обоих станков мы пренебрегаем.

Под случайным процессом понимают изменение во времени состояний некоторой физической системы заранее неизвестным случайным образом. При этом под физической системой будем понимать любое техническое устройство, группу устройств, предприятие, отрасль, биологическую систему и т.д.

Случайный процесс протекающий в системе называется Марковским – если для любого момента времени ,вероятностные характеристики процесса в будущем (t > ) зависят только от его состояния в данный момент времени (в настоящем ) и не зависят от того, когда и как система пришла в это состояние в прошлом .(Например, счетчик Гейгера, регистрирующий число космических частиц).

Марковские процессы принято делить на 3 вида:

1. Марковская цепь – процесс, состояния которого дискретны (т.е. их можно перенумеровать), и время, по которому он рассматривается, также дискретно (т.е. процесс может менять свои состояния только в определенные моменты времени). Такой процесс идет (изменяется) по шагам (иначе - по тактам).

2. Дискретный марковский процесс – множество состояний дискретно (можно перечислить), а время непрерывно (переход из одного состояния в другое – в любой момент времени).

3. Непрерывный марковский процесс – множество состояний и время -непрерывные.

На практике Марковские процессы в чистом виде встречаются не часто. Однако нередко приходится иметь место с процессами, для которых влиянием предыстории можно пренебречь. Кроме того, если все параметры из «прошлого»,от которых зависит «будущее» включить в состоянии системы в «настоящем», то ее также можно рассматривать как Марковскую. Однако это часто приводит к значительному росту числа учитываемых переменных и невозможности получить решение задачи.

В исследование операций большое значение занимают так называемые Марковские случайные процессы с дискретными состояниями и непрерывным временем .

Процесс называется процессом с дискретными состояниями , если все его возможные состояния , ,... можно заранее перечислить (перенумеровать). Переход системы из состояния в состояние переходит практически мгновенно –скачком.

Процесс называется процессом с непрерывным временем , если моменты перехода из состояния в состояние могут принимать любые случайные значения на временной оси.

Например : Техническое устройство S состоит из двух узлов , каждый из которых в случайный момент времени может выйти из строя (отказать ). После этого мгновенно начинается ремонт узла (восстановление ),который продолжается случайное время.

Возможны следующие состояния системы:

Оба узла исправны;

Первый узел ремонтируется,второй исправен.


– второй узел ремонтируется,первый исправен

Оба узла ремонтируются.

Переход системы из состояния в состояние происходит в случайные моменты времени практически мгновенно. Состояния системы и связь между ними удобно отобразить с помощью графа состояний .

Состояния


Переходы

Переходы и отсутствуют т.к. отказы и восстановления элементов происходят независимо и случайно и вероятность одновременного выхода из строя (восстановления) двух элементов бесконечно мала и ею можно пренебречь.

Если все потоки событий, переводящие систему S из состояния в состояние –простейшие , то процесс, протекающий в такой системе будетМарковским . Это обуславливается тем, что простейший поток не обладает последействием, т.е. в нем «будущее» не зависит от «прошлого» и, кроме того, он обладает свойством ординарности – вероятность одновременного появления двух и более событий бесконечно мала, т.е невозможен переход из состояния в состояние, минуя несколько промежуточных состояний.

Для наглядности на графе состояний удобно у каждой стрелки перехода проставить интенсивность того потока событий, который переводит систему из состояния в состояние по данной стрелке ( -интенсивность потока событий, переводящего систему из состояния в . Такой граф называется размеченным.

Используя размеченный граф состояний системы можно построить математическую модель данного процесса.

Рассмотрим переходы системы из некоторого состояния в предыдущее или последующее . Фрагмент графа состояний в этом случае будет выглядеть следующим образом:

Пусть система в момент времени t находится в состоянии .

Обозначим (t)- вероятность i-ого состояния системы – вероятность того, что система в момент времени t находится в состоянии . Для любого момента времени t справедливо =1.

Определим вероятность того, что и в момент времени t+∆t система будет находиться в состоянии . Это может быть в следующих случаях:

1) и за время ∆ t из него не вышла. Это означает, что за время ∆t не возникло события, переводящего систему в состояние (поток с интенсивностью ) или события, переводящего её в состояние (поток с интенсивностью ). Определим вероятность этого при малых ∆t.

При экспоненциальном законе распределения времени между двумя соседними требованиями, соответствующему простейшему потоку событий вероятность того, что на интервале времени ∆t не возникнет ни одного требования в потоке с интенсивностью λ 1 будет равна

Разлагая функцию f(t) в ряд Тейлора (t>0) получим (для t=∆t)

f(∆t)=f(0)+ (0)* ∆t + *∆ + *∆ +…=

= +(-l) *∆t+ (∆ + *(∆ +…»1-l*∆t при ∆t®0

Аналогично для потока с интенсивностью λ 2 получим .

Вероятность, что на интервале времени ∆t (при ∆t®0) не возникнет ни одного требования будет равна

(∆t)/ = (∆t/ * (∆t/ = (1- *∆t)(1- *∆t) =

1 - - *∆t + 1 - ( + )*∆t + б.м.

Таким образом, вероятность того, что система за время ∆t не вышла из состояния , при малых ∆t будет равна

P( / )=1 – ( + )* ∆t

2) Система находилась в состоянии S i -1 и за время перешла в состояние S i . То есть в потоке с интенсивностью возникло хотя бы одно событие. Вероятность этого равна для простейшего потока с интенсивностью λ будет

Для нашего случая вероятность такого перехода будет равна

3)Система находилась в состоянии и за время ∆tперешла в состояние . Вероятность этого будет

Тогда вероятность, что система в момент времени (t+∆t) будет в состоянии S i равна

Вычтем из обеих частей P i (t), разделим на ∆tи, перейдя к пределу, при ∆t→0, получим

Подставив соответствующие значения интенсивностей переходов из состояний в состояния, получим систему дифференциальных уравнений, описывающих изменение вероятностей состояний системы как функций времени.

Данные уравнения называются уравнениями Колмогорова-Чепмена для дискретного марковского процесса.

Задав начальные условия (например, P 0 (t=0)=1,P i (t=0)=0 i≠0) и решив их, получим выражения для вероятностей состояния системы как функций времени. Аналитические решения достаточно просто получить, если число уравнений ≤ 2,3. Если их больше, то обычно решают уравнения численно- на ЭВМ (например методом Рунге-Кутта).

В теории случайных процессов доказано , что если число n состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое, то существует предел , к которому стремятся вероятности при t→ . Такие вероятности называются финальными вероятностями состояний, а установившийся режим - стационарным режимом функционирования системы.

Так как в стационарном режиме все , следовательно, все =0. Приравняв в системе уравнений левые части 0 и, дополнив их уравнением =1, получим систему линейных алгебраических уравнений, решив которую найдём значения финальных вероятностей.

Пример. Пусть в нашей системе интенсивности отказов и восстановления элементов следующие

Отказы 1эл:

2эл:

Ремонт 1эл:

2эл:


P 0 +P 1 +P 2 +P 3 =1

0=-(1+2)P 0 +2P 1 +3 P 2

0=-(2+2)P 1 +1P 0 +3P 3

0=-(1+3)P 2 +2P 0 +2P 3

0=-(2+3)P 3 +2P 1 +1P 2

Решив данную систему, получим

P 0 =6/15=0.4; P 1 =3/15=0.2; P 2 =4/15=0.27; P 3 =2/15≈0.13.

Т.е. в стационарном состоянии система в среднем

40% находится в состоянии S 0 (оба узла исправны),

20%- в состоянии S 1 (1-й эл-т ремонтируется, 2-й исправен),

27%- в состоянии S 2 (2-й эл-тремонтируется, 1исправен),

13%- в состоянии S 3 – оба эл-та в ремонте.

Знание финальных вероятностей позволяет оценить среднюю эффективность работы системы и загрузку службы ремонта.

Пусть система в состоянии S 0 приносит доход 8 усл.ед. в единицу времени; в состоянии S 1 -доход 3 усл.ед.; в состоянии S 2 - доход 5;в состоянии S 3 -доход=0

Стоимость ремонта в единицу времени для эл-та 1- 1(S 1, S 3) усл.ед., эл-та 2- (S 2, S 3) 2 усл.ед. Тогда в стационарном режиме:

Доход системы в единицу времени будет:

W дох =8P 0 +3P 1 +5P 2 +0P 3 =8·0.4+3·0.2+5·0.27+0·0.13=5.15 усл.ед.

Стоимость ремонта в ед. времени:

W рем =0P 0 +1P 1 +2P 2 +(1+2)P 3 =0·0.4+1·0.2+2·0.27+3·0.13=1.39 усл.ед.

Прибыль в единицу времени

W= W дох -W рем =5.15-1.39=3.76 усл.ед

Проведя определённые расходы можно изменить интенсивности λи μ и, соответственно, эффективность системы. Целесообразность таких расходов можно оценить, проведя пересчёт P i . и показателей эффективности системы.

МАРКОВСКИЙ ПРОЦЕСС

Процесс без последействия, - случайный процесс , эволюция к-рого после любого заданного значения временного параметра tне зависит от эволюции, предшествовавшей t, при условии, что значение процесса в этот фиксировано (короче: "будущее" н "прошлое" процесса не зависят друг от друга при известном "настоящем").

Определяющее М. п. свойство принято наз. марковским; впервые оно было сформулировано А. А. Марковым . Однако уже в работе Л. Башелье можно усмотреть попытку трактовать броуновское как М. п., попытку, получившую обоснование после исследований Н. Винера (N. Wiener, 1923). Основы общей теории М. п. с непрерывным временем были заложены А. Н. Колмогоровым .

Марковское свойство. Имеются существенно отличающиеся друг от друга определения М. п. Одним из наиболее распространенных является следующее. Пусть на вероятностном пространстве задан случайный процесс со значениями из измеримого пространства где Т - подмножество действительной оси Пусть N t (соответственно N t ).есть s-алгебра в порожденная величинами X(s).при где Другими словами, N t (соответственно N t ) - это совокупность событий, связанных с эволюцией процесса до момента t(начиная с t). Процесс X(t).наз. марковским процессом, если (почти наверное) для всех выполняется марковское свойство:

или, что то же самое, если для любых

М. п., для к-рого Тсодержится в множестве натуральных чисел, наз. Маркова цепью (впрочем, последний термин чаще всего ассоциируется со случаем не более чем счетного Е). Если Тявляется интервалом в а Ене более чем счетно, М. п. наз. цепью Маркова с непрерывным временем. Примеры М. п. с непрерывным временем доставляются диффузионными процессами и процессами с независимыми приращениями, в том числе пуассоновским и винеровским.

В дальнейшем для определенности речь будет идти только о случае Формулы (1) и (2) дают ясную интерпретацию принципа независимости "прошлого" и "будущего" при известном "настоящем", но основанное на них определение М. п. оказалось недостаточно гибким в тех многочисленных ситуациях, когда приходится рассматривать не одно, а набор условий типа (1) или (2), отвечающих различным, хотя и согласованным определенным образом, мерам Такого рода соображения привели к принятию следующего определения (см. , ).

Пусть заданы:

а) где s-алгебра содержит все одноточечные множества в Е;

б) измеримое снабженное семейством s-алгебр таких, что если

в) (" ") x t =x t (w), определяющая при любых измеримое отображение

г) для каждых и вероятностная мера на s-алгебре такая, что функция измерима относительно если и

Набор наз. (необрывающимся) марковским процессом, заданным в если -почти наверное

каковы бы ни были Здесь - пространство элементарных событий, - фазовое пространство или пространство состояний, Р(s, x, t, В ) - переходная функция или вероятность перехода процесса X(t). Если Енаделено топологией, а - совокупность борелевских множеств в Е, то принято говорить, что М. п. задан в Е. Обычно в определение М. п. включают требование, чтобы и тогда истолковывается как вероятность при условии, что x s =x.

Возникает вопрос: всякую ли марковскую переходную функцию Р(s, x ; t, В ), заданную в измеримом пространстве можно рассматривать как переходную функцию нек-рого М. п. Ответ положителен, если, напр., Еявляется сепарабельным локально компактным пространством, а - совокупностью борелевских множеств в Е. Более того, пусть Е - полное метрич. пространство и пусть

для любого где
а - дополнение e-окрестности точки х. Тогда соответствующий М. п. можно считать непрерывным справа и имеющим пределы слева (т. е. таковыми можно выбрать его траектории). Существование же непрерывного М. п. обеспечивается условием при (см. , ). В теории М. п. основное внимание уделяется однородным (по времени) процессам. Соответствующее определение предполагает заданной систему объектов а) - г) с той разницей, что для фигурировавших в ее описании параметров sи u теперь допускается лишь значение 0. Упрощаются и обозначения:

Далее, постулируется однородность пространства W, т. е. требуется, чтобы для любых существовало такое что (w) при Благодаря этому на s-алгебре N, наименьшей из s-алгебр в W, содержащих любое событие вида задаются операторы временного сдвига q t , к-рые сохраняют операции объединения, пересечения и вычитания множеств и для к-рых

Набор наз. (необрывающимся) однородным марковским процессом, заданным в если -почти наверное

для Переходной функцией процесса X(t).считается Р(t, x, В ), причем, если нет специальных оговорок, дополнительно требуют, чтобы Полезно иметь в виду, что при проверке (4) достаточно рассматривать лишь множества вида где и что в (4) всегда F t можно заменить s-алгеброй , равной пересечению пополнений F t по всевозможным мерам Нередко в фиксируют вероятностную меру m ("начальное ") и рассматривают марковскую случайную функцию где - мера на заданная равенством

М. п. наз. прогрессивно измеримым, если при каждом t>0 функция индуцирует измеримое в где есть s-алгебра

борелевских подмножеств в . Непрерывные справа М. п. прогрессивно измеримы. Существует способ сводить неоднородный случай к однородному (см. ), и в дальнейшем речь будет идти об однородных М. п.

Строго . Пусть в измеримом пространстве задан М. п.

Функция наз. марковским моментом, если для всех При этом относят к семейству F t , если при (чаще всего F t интерпретируют как совокупность событий, связанных с эволюцией X(t).до момента т). Для полагают

Прогрессивно измеримый М. п. Xназ. строго марковским процессом (с. м. п.), если для любого марковского момента т и всех и соотношение

(строго марковское свойство) выполняется -почти наверное на множестве W t . При проверке (5) достаточно рассматривать лишь множества вида где в этом случае С. м. п. является, напр., любой непрерывный справа феллеровский М. п. в топологич. пространстве Е. М. п. наз. феллеровским марковским процессом, если функция

непрерывна всякий раз, когда f непрерывна и ограничена.

В классе с. м. п. выделяются те или иные подклассы. Пусть марковская Р(t, x, В ), заданная в метрическом локально компактном пространстве Е, стохастически непрерывна:

для любой окрестности Uкаждой точки Тогда если операторы переводят в себя непрерывных и обращающихся в 0 в бесконечности функций, то функции Р(t, х, В ).отвечает стандартный М. п. X, т. е. непрерывный справа с. м. п., для к-рого

и - почти наверное на множестве а - неубывающие с ростом пмарковские моменты.

Обрывающийся марковский процесс. Нередко физич. системы целесообразно описывать с помощью необрывающегося М. п., но лишь на временном интервале случайной длины. Кроме того, даже простые преобразования М. п. могут привести к процессу с траекториями, заданными на случайном интервале (см. Функционал от марковского процесса). Руководствуясь этими соображениями, вводят понятие обрывающегося М. п.

Пусть - однородный М. п. в фазовом пространстве имеющий переходную функцию и пусть существуют точка и функция такие, что при и в противном случае (если нет специальных оговорок, считают ). Новая траектория x t (w) задается лишь для ) посредством равенства a F t определяется как в множестве

Набор где наз. обрывающимся марковским процессом (о. м. п.), полученным из с помощью обрыва (или убивания) в момент z. Величина z наз. моментом обрыва, или временем жизни, о. м. п. Фазовым пространством нового процесса служит где есть след s-алгебры в Е. Переходная функция о. м. п.- это сужение на множество Процесс X(t).наз. строго марковским процессом, или стандартным марковским процессом, если соответствующим свойством обладает Необрывающийся М. п. можно рассматривать как о. м. п. с моментом обрыва Неоднородный о. м. п. определяется аналогичным образом. М.

Марковские процессы и . М. п. типа броуновского движения тесно связаны с дифференциальными уравнениями параболич. типа. Переходная р(s, x, t, у ).диффузионного процесса удовлетворяет при нек-рых дополнительных предположениях обратному и прямому дифференциальным уравнениям Колмогорова:


Функция р(s, x, t, у ).есть функция Грина уравнений (6) - (7), и первые известные способы построения диффузионных процессов были основаны на теоремах существования этой функции для дифференциальных уравнений (6) - (7). Для однородного по времени процесса L(s, x ) = L (x).на гладких функциях совпадает с характеристич. оператором М. п. (см. Переходных операторов полугруппа ).

Математич. ожидания различных функционалов от диффузионных процессов служат решениями соответствующих краевых задач для дифференциального уравнения (1). Пусть - математич. ожидание по мере Тогда функция удовлетворяет при s уравнению (6) и условию

Аналогично, функция

удовлетворяет при s уравнению

и условию и 2 ( Т, x ) = 0.

Пусть тt - момент первого достижения границы дD области траекторией процесса Тогда при нек-рых условиях функция

удовлетворяет уравнению

и принимает значения ср на множестве

Решение 1-й краевой задачи для общего линейного параболич. уравнения 2-го порядка


при довольно общих предположениях может быть записано в виде


В случае, когда Lи функции с, f не зависят от s, аналогичное (9) представление возможно и для решения линейного эллиптич. уравнения. Точнее, функция


при нек-рых предположениях есть задачи

В случае, когдгг оператор Lвырождается (del b(s, х ) = 0 ).или дD недостаточно "хорошая", граничные значения могут и не приниматься функциями (9), (10) в отдельных точках или на целых множествах. Понятие регулярной граничной точки для оператора L имеет вероятностную интерпретацию. В регулярных точках границы граничные значения достигаются функциями (9), (10). Решение задач (8), (11) позволяет изучать свойства соответствующих диффузионных процессов и функционалов от них.

Существуют методы построения М. п., не опирающиеся на построение решений уравнений (6), (7), напр. метод стохастических дифференциальных уравнений, абсолютно непрерывная замена меры и др. Это обстоятельство вместе с формулами (9), (10) позволяет вероятностным путем строить и изучать свойства краевых задач для уравнения (8), а также свойства решении соответствующего эллиптич. уравнения.

Так как решение стохастического дифференциального уравнения нечувствительно к вырождению матрицы b(s, x ), то вероятностные методы применялись для построения решений вырождающихся эллиптических и параболических дифференциальных уравнений. Распространение принципа усреднения Н. М. Крылова и Н. Н. Боголюбова на стохастические дифференциальные уравнения позволило с помощью (9) получить соответствующие результаты для эллиптических и параболических дифференциальных уравнений. Нек-рые трудные задачи исследования свойств решений уравнений такого типа с малым параметром при старшей производной оказалось возможным решить с помощью вероятностных соображений. Вероятностный смысл имеет и решение 2-й краевой задачи для уравнения (6). Постановка краевых задач для неограниченной области тесно связана с возвратностью соответствующего диффузионного процесса.

В случае однородного по времени процесса (Lне зависит от s) положительное решение уравнения с точностью до мультипликативной постоянной совпадает при нек-рых предположениях со стационарной плотностью распределения М. п. Вероятностные соображения оказываются полезными и при рассмотрении краевых задач для нелинейных параболич. уравнений. Р. 3. Хасьминский.

Лит. : Марков А. А., "Изв. физ.-мат. об-ва Казан. ун-та", 1906, т. 15, №4, с. 135-56; В а с h e l i е r L., "Ann. scient. Ecole norm, super.", 1900, v. 17, p. 21-86; Колмогоров А. Н., "Math. Ann.", 1931, Bd 104, S. 415- 458; рус. пер.-"Успехи матем. наук", 1938, в. 5, с. 5-41; Ч ж у н К а й - л а й, Однородные цепи Маркова, пер. с англ., М., 1964; Р е 1 1 е r W., "Ann. Math.", 1954, v. 60, p. 417-36; Д ы н к и н Е. Б., Ю ш к е в и ч А. А., "Теория вероятн. и ее примен.", 1956, т. 1, в. 1, с. 149-55; X а н т Дж.-А., Марковские процессы и потенциалы, пер. с англ., М., 1962; Д е л л а ш е р и К., Емкости и случайные процессы, пер. с франц., М., 1975; Д ы н к и н Е. В., Основания теории марковских процессов, М., 1959; его же, Марковские процессы, М., 1963; Г и х м а н И. И., С к о р о х о д А. В., Теория случайных процессов, т. 2, М., 1973; Фрейдлин М. И., в кн.: Итоги науки. Теория вероятностей, - важный специальный вид случайных процессов. Примером марковского процесса может служить распад радиоактивного вещества, где вероятность распада данного атома за малый промежуток времени не зависит от течения процесса в предшествующий период.… … Большой Энциклопедический словарь

Марковский процесс случайный процесс, эволюция которого после любого заданного значения временного параметра не зависит от эволюции, предшествовавшей, при условии, что значение процесса в этот момент фиксировано («будущее» процесса не… … Википедия

Марковский процесс - 36. Марковский процесс Примечания: 1. Условную плотность вероятности называют плотностью вероятности перехода из состояния xn 1в момент времени tn 1 в состояние хпв момент времени tn. Через нее выражаются плотности вероятностей произвольного… … Словарь-справочник терминов нормативно-технической документации

марковский процесс - Markovo procesas statusas T sritis automatika atitikmenys: angl. Markovprocess vok. Markovprozeß, m rus. марковский процесс, m; процесс Маркова, m pranc. processus markovien, m … Automatikos terminų žodynas

марковский процесс - Markovo vyksmas statusas T sritis fizika atitikmenys: angl. Markov process; Markovian process vok. Markow Prozeß, m; Markowscher Prozeß, m rus. марковский процесс, m; процесс Маркова, m pranc. processus de Markoff, m; processus marcovien, m;… … Fizikos terminų žodynas

Важный специальный вид случайных процессов. Примером Марковского процесса может служить распад радиоактивного вещества, где вероятность распада данного атома за малый промежуток времени не зависит от течения процесса в предшествующий период.… … Энциклопедический словарь

Важный специальный вид случайных процессов (См. Случайный процесс), имеющих большое значение в приложениях теории вероятностей к различным разделам естествознания и техники. Примером М. п. может служить распад радиоактивного вещества.… … Большая советская энциклопедия

Выдающееся открытие в области математики, сделанное в 1906 русским ученым А.А. Марковым.

Марковские процессы были выведены учеными в 1907 году. Ведущие математики того времени развивали эту теорию, некоторые совершенствуют ее до сих пор. Эта система распространяется и в других научных областях. Практические цепи Маркова применяются в различных сферах, где человеку необходимо прибывать в состоянии ожидания. Но, чтобы четко понимать систему, нужно владеть знаниями о терминах и положениях. Главным фактором, который определяет Марковский процесс, считаются случайности. Правда, он не схож с понятием неопределенности. Для него присущи определенные условия и переменные.

Особенности фактора случайности

Это условие подчиняется статической устойчивости, точнее, ее закономерностям, которые не учитываются при неопределенности. В свою очередь, данный критерий позволяет использовать математические методы в теории Марковских процессов, как отмечал ученый, изучавший динамику вероятностей. Созданная им работа касалась непосредственно этих переменных. В свою очередь, изученный и развившийся случайный процесс, имеющий понятия состояния и перехода, а также применяемый в стохастических и математических задачах, при этом дает возможность этим моделям функционировать. Кроме всего прочего, он дает возможность совершенствоваться другим важным прикладным теоретическим и практическим наукам:

  • диффузионная теория;
  • теория массового обслуживания;
  • теория надежности и прочего;
  • химия;
  • физика;
  • механика.

Сущностные особенности не запланированного фактора

Этот Марковский процесс обусловлен случайной функцией, то есть любое значение аргумента считается данной величиной или той, что принимает заранее заготовленный вид. Примерами служат:

  • колебания в цепи;
  • скорость движения;
  • шероховатость поверхности на заданном участке.

Также принято считать, что фактом случайной функции выступает время, то есть происходит индексация. Классификация имеет вид состояния и аргумент. Этот процесс может быть с дискретными, а также непрерывными состояниями или временем. Причем случаи разные: все происходит или в одном, или в другом виде, или одновременно.

Детальный разбор понятия случайности

Построить математическую модель с необходимыми показателями эффективности в явно аналитическом виде было достаточно сложно. В дальнейшем реализовать данную задачу стало возможно, ведь возник Марковский случайный процесс. Разбирая детально это понятие, необходимо вывести некоторую теорему. Марковский процесс - это физическая система, изменившая свое положение и состояние, которые заранее не были запрограммированы. Таким образом, выходит, что в ней протекает случайный процесс. Например: космическая орбита и корабль, который выводится на нее. Результат достигнут лишь благодаря каким-то неточностям и корректировкам, без этого не реализуется заданный режим. Большинству происходящих процессов присущи случайность, неопределенность.

По существу вопроса, практически любой вариант, который можно рассмотреть, будет подвержен этому фактору. Самолет, техническое устройство, столовая, часы - все это подвержено случайным изменениям. Причем данная функция присуща любому происходящему процессу в реальном мире. Однако пока это не касается индивидуально настроенных параметров, происходящие возмущения воспринимаются как детерминированные.

Понятие Марковского случайного процесса

Проектировка какого-либо технического или механического прибора, устройства вынуждает создателя учитывать различные факторы, в частности неопределенности. Вычисление случайных колебаний и возмущений возникает в момент личной заинтересованности, например, при реализации автопилота. Некоторые процессы, изучаемые в науках вроде физики и механики, являются таковыми.

Но обращать на них внимание и проводить скрупулезные исследования следует начинать в тот момент, когда это непосредственно нужно. Марковский случайный процесс имеет следующее определение: характеристика вероятности будущего вида зависит от состояния, в котором он находится в данный момент времени, и не имеет отношения к тому, как выглядела система. Итак, данное понятие указывает на то, что результат можно предсказать, учитывая лишь вероятность и забыв про предысторию.

Подробное токование понятия

В настоящий момент система находится в определенном состоянии, она переходит и меняется, предсказать, что будет дальше, по сути, невозможно. Но, учитывая вероятность, можно сказать, что процесс будет завершен в определенном виде или сохранит предыдущий. То есть будущее возникает из настоящего, забывая о прошлом. Когда система или процесс переходит в новое состояние, то предысторию обычно опускают. Вероятность в Марковских процессах играет немаловажную роль.

Например, счетчик Гейгера показывает число частиц, которое зависит от определенного показателя, а не от того, в какой именно момент оно пришло. Здесь главным выступает вышеуказанный критерий. В практическом применении могут рассматриваться не только Марковские процессы, но и подобные им, к примеру: самолеты участвуют в бою системы, каждая из которых обозначена каким-либо цветом. В данном случае главным критерием вновь выступает вероятность. В какой момент произойдет перевес в числе, и для какого цвета, неизвестно. То есть этот фактор зависит от состояния системы, а не от последовательности гибели самолетов.

Структурный разбор процессов

Марковским процессом называется любое состояние системы без вероятностного последствия и без учета предыстории. То есть, если включить будущее в настоящее и опустить прошлое. Перенасыщение данного времени предысторией приведет к многомерности и выведет сложные построения цепей. Поэтому лучше эти системы изучать простыми схемами с минимальными числовыми параметрами. В результате эти переменные считаются определяющими и обусловленными какими-либо факторами.

Пример Марковских процессов: работающий технический прибор, который в этот момент исправен. В данном положении вещей интерес представляет вероятность того, что устройство будет функционировать еще длительный период времени. Но если воспринимать оборудование как отлаженное, то этот вариант уже не будет принадлежать к рассматриваемому процессу ввиду того, что нет сведений о том, сколько аппарат работал до этого и производился ли ремонт. Однако если дополнить эти две переменные времени и включить их в систему, то ее состояние можно отнести к Марковскому.

Описание дискретного состояния и непрерывности времени

Модели Марковских процессов применяются в тот момент, когда необходимо пренебречь предысторией. Для исследования в практике наиболее часто встречаются дискретные, непрерывные состояния. Примерами такой ситуации являются: в структуру оборудования входят узлы, которые в условиях рабочего времени могут выйти из строя, причем происходит это как незапланированное, случайное действие. В результате состояние системы подвергается ремонту одного или другого элемента, в этот момент какой-то из них будет исправен или они оба будут отлаживаться, или наоборот, являются полностью налаженными.

Дискретный Марковский процесс основан на теории вероятности, а также является переходом системы из одного состояния в другое. Причем данный фактор происходит мгновенно, даже если происходят случайные поломки и ремонтные работы. Чтобы провести анализ такого процесса, лучше использовать графы состояний, то есть геометрические схемы. Системные состояния в таком случае обозначены различными фигурами: треугольниками, прямоугольниками, точками, стрелками.

Моделирование данного процесса

Марковские процессы с дискретными состояниями - возможные видоизменения систем в результате перехода, осуществляющегося мгновенно, и которые можно пронумеровать. Для примера можно построить график состояния из стрелок для узлов, где каждая будет указывать путь различно направленных факторов выхода из строя, рабочего состояния и т. д. В дальнейшем могут возникать любые вопросы: вроде того, что не все геометрические элементы указывают верное направление, ведь в процессе способен испортиться каждый узел. При работе важно учитывать и замыкания.

Марковский процесс с непрерывным временем происходит тогда, когда данные заранее не фиксируются, они происходят случайно. Переходы ранее были не запланированы и происходят скачками, в любой момент. В данном случае вновь главную роль играет вероятность. Однако, если сложившаяся ситуация относится к указанной выше, то для описания потребуется разработать математическую модель, но важно разбираться в теории возможности.

Вероятностные теории

Данные теории рассматривают вероятностные, имеющие характерные признаки вроде случайного порядка, движения и факторов, математические задачи, а не детерминированные, которые являются определенными сейчас и потом. Управляемый Марковский процесс имеет фактор возможности и основан на нем. Причем данная система способна переходить в любое состояние мгновенно в различных условиях и временном промежутке.

Чтобы применять эту теорию на практике, необходимо владеть важными знаниями вероятности и ее применения. В большинстве случаев каждый пребывает в состоянии ожидания, которое в общем смысле и есть рассматриваемая теория.

Примеры теории вероятности

Примерами Марковских процессов в данной ситуации могут выступать:

  • кафе;
  • билетные кассы;
  • ремонтных цеха;
  • станции различного назначения и пр.

Как правило, люди ежедневно сталкиваются с этой системой, сегодня она носит название массового обслуживания. На объектах, где присутствует подобная услуга, есть возможность требования различных запросов, которые в процессе удовлетворяются.

Скрытые модели процесса

Такие модели являются статическими и копируют работу оригинального процесса. В данном случае основной особенностью является функция наблюдения за неизвестными параметрами, которые должны быть разгаданы. В результате эти элементы могут использоваться в анализе, практике или для распознавания различных объектов. Обычные Марковские процессы основаны на видимых переходах и на вероятности, в скрытой модели наблюдаются только неизвестные переменные, на которые оказывает влияние состояние.

Сущностное раскрытие скрытых Марковских моделей

Также она имеет распределение вероятности среди других значений, в результате исследователь увидит последовательность символов и состояний. Каждое действие имеет распределение по вероятности среди других значений, ввиду этого скрытая модель дает информацию о сгенерированных последовательных состояниях. Первые заметки и упоминания о них появились в конце шестидесятых годов прошлого столетия.

Затем их стали применять для распознавания речи и в качестве анализаторов биологических данных. Кроме того, скрытые модели распространились в письме, движениях, информатике. Также эти элементы имитируют работу основного процесса и пребывают в статике, однако, несмотря на это, отличительных особенностей значительно больше. В особенности данный факт касается непосредственного наблюдения и генерирования последовательности.

Стационарный Марковский процесс

Данное условие существует при однородной переходной функции, а также при стационарном распределении, считающимся основным и, по определению, случайным действием. Фазовым пространством для данного процесса является конечное множество, но при таком положении вещей начальная дифференциация существует всегда. Переходные вероятности в данном процессе рассматриваются при условиях времени или дополнительных элементах.

Детальное изучение Марковских моделей и процессов выявляет вопрос об удовлетворении равновесия в различных сферах жизни и деятельности общества. С учетом того, что данная отрасль затрагивает науку и массовое обслуживание, ситуацию можно исправить, проанализировав и спрогнозировав исход каких-либо событий или действий тех же неисправных часов или техники. Чтобы полностью использовать возможности Марковского процесса, стоит детально в них разбираться. Ведь этот аппарат нашел широкое применение не только в науке, но и в играх. Эта система в чистом виде обычно не рассматривается, а если и используется, то только на основе вышеупомянутых моделей и схем.


Top