Инерция вращательного движения. Вычисление момента инерции. Центробежный момент инерции

В решении задач 12.1 -12.4 не учитывалась инертность вращающихся частей (барабана, редуктора и электродвигателя). Работа, затрачиваемая на ускорение вращательного движения, может быть определена через кинетическую энергию вращающейся массы т. Для объема массой dm, находящегося на расстоянии г от центра вращения, кинетическая энергия равна dmx> 2 / 2. Скорость ц = cor, тогда кинетическая энергия объема массой dm вращающегося тела равна dm со 2 г 2 / 2. По аналогии с выражением кинетической энергии объема массой dm при поступательном движении как функции от ц 2 / 2 запишем выражение для кинетической энергии при вращательном движении как функцию от со 2 / 2:

где dJ = r 2 dm - мера инертности во вращательном движении элементарного объема массой dm, находящегося на расстоянии гот оси вращения.

Интеграл по объему тела

момент инерции тела относительно оси вращения Z-

Моменты инерции тел простой формы

1. Круглый однородный тонкий диск радиуса R постоянной толщины И и плотности р (рис. 12.1, а).

Ось вращения проходит через центр диска. Момент инерции диска равен


Рис. 12.1.

Масса диска т = рhnR 2 . Таким образом, момент инерции тонкого однородного диска относительно собственного центра массы (центра тяжести) равен J Cz = mR 2 / 2.

2. Круглое тонкое кольцо радиуса R постоянной ширины b и толщины И (рис. 12.1, б).

Интеграл

Масса кольца

Следовательно, момент инерции кольца равен

и для очень узкого кольца при b« R момент инерции J Cz = mR 2 .

  • 3. Тонкий однородный стержень сечением s и длиной I.
  • 3.1. Пусть ось вращения г проходит через центр тяжести (рис. 12.1, в). Интеграл

где 5 - площадь поперечного сечения стержня.

Масса стержня т = рsi. Следовательно, J Cz = тР / 12.

3.2. Ось вращения? проходит через один из концов стержня (рис. 12.1, г).

Интеграл

т.е. в 4 раза больше J c z -

Момент инерции тела относительно произвольной оси вращения

Момент инерции тела J z относительно оси вращения, смещенной на расстояние с относительно центра масс тела, запишем в виде

Интеграл по объему где т - масса тела. Интеграл

относительно оси, проходящей через центр тяжести (центр

Следовательно, при параллельном переносе момент инерции тела относительно оси, находящейся на расстоянии с от центра тяжести, равен

где У с, =jr 2 dm - момент инерции тела относительно оси, проходящей через центр тяжести этого тела.

? Задача 12.5

Используя формулу (12.9), определить момент инерции тонкого стержня длиной / и постоянной площади сечения s. Ось вращения проходит через один из концов стрежня.

Решение

Момент инерции стержня относительно оси, проходящей через центр тяжести, равен J Cz = тР / 12. Момент инерции относительно оси, проходящей от центра тяжести на расстоянии 1/2 , равен

Согласно (12.9) из всех осей данного направления наименьшее значение имеет момент инерции относительно оси, проходящей через центр тяжести тела.

Совместим начало ортогональной системы координат с центром тяжести тела. Используя формулу (12.8), можно определить моменты инерции тела J x , J y и J относительно каждой из трех осей координат. Мысленно поворачивая тело поочередно относительно каждой из координатных осей, можно заметить, что в некоторых положениях значения моментов инерции достигают экстремальных значений. Оси, относительно которых один из моментов инерции тела достигает наибольшего значения (из всех возможных при любых поворотах), а другие - наименьших значений, называют главными осями инерции тела. Очевидно, что для тела с центром симметрии (шар, полый шар) все оси главные. Ось симметрии тела (цилиндра, прямоугольного параллелепипеда и т.п.) также является главной осью.

Если главная ось инерции детали, например ротора турбины, смещена параллельно оси вращения (рис. 12.2, а ), то на ротор действует центростремительная сила, равная С е = тоз 2 е с - масса ротора; е с - смещение главной оси инерции ротора относительно оси вращения). Сила С е воспринимается опорами ротора и пере-


Рис. 12.2. Схема сил инерции при вращении неуравновешенного ротора дается фундаменту машины. Заметим, что вектор силы С г по отношению к неподвижным опорам и фундаменту вращается с частотой со. Возникают колебания машины и фундамента. Очевидно, для уравновешивания ротора необходимо обеспечить г с = 0. Такое уравновешивание называется статическим и может быть выполнено при невращающемся роторе.

На рис. 12.2, б показана схема сил инерции, действующих при вращении на статически уравновешенный ротор. При этом главная ось инерции может не совпадать с осью вращения, образуя с ней некоторый угол а.

Центростремительные силы С а, действующие на правую и левую части ротора, противоположно направлены и создают момент сил. Этот момент сил передается на опоры ротора, возбуждая колебания машины и фундамента. Для уравновешивания ротора необходимо обеспечить а = 0, что возможно только при вращении ротора, и поэтому оно называется динамическим. По данным измерения колебаний машины определяют, в каком месте ротора необходимо установить противовес или удалить часть материала ротора.

Учитывая некоторое различие плотности и других свойств литого материала, слитки для поковок роторов паровых турбин изготавливают в форме тел с осевой симметрией относительно продольной оси, с которой должна будет совпадать ось вращения ротора.

? Задача 12.6

Определить ускорение тележки с грузом по условию задачи 12.4.

Момент инерции ротора электродвигателя равен / = 0,03 кгм 2 . Масса барабана т 6 = 200 кг, а радиус R = 0,2 м.

Решение

При возможных перемещениях 8ф и 8х зависимость (12.5) запишем в виде

где 8х = R 5(р / / (/ пр - передаточное отношение между валами электродвигателя и подъемника).

Соответственно, ускорение х = /?ф// пр; угол поворота барабана 8ф б = = 8ф / / ; угловое ускорение барабана ф б = ф// пр. Тогда

Момент инерции барабана определим, полагая, что масса барабана сосредоточена на радиусе R. Тогда / б = тЮ = 200 0,2 2 = 8 кг м 2 . Передаточное число / = to R / х> = 60,7.

Угловое ускорение ротора электродвигателя

Ускорение тележки с грузом х = 0,573 м/с 2 . Это значение почти в 4 раза меньше, чем расчетное ускорение без учета инертности двигателя и барабана (см. задачу 12.3). ?

В задаче 12.6 сомножитель при угловом ускорении представляет собой момент инерции системы, приведенный к оси электродвигателя. Очевидно, что для получения приведенного момента инерции деталей, установленных на тихоходном валу, к оси более быстроходного вала следует уменьшить его значение в / 2 раза (/ - передаточное отношение между этими валами).

В динамике поступательного движения материальной точки кроме кинематических характеристик вводились понятия силы и массы. При изучении динамики вращательного движения вводятся физические вели­чины - момент сил и момент инерции , физический смысл которых рас­кроем ниже.

Пусть некоторое тело под действием силы , приложенной в точке А , приходит во вращение вокруг оси ОО" (рисунок 5.1).

Рисунок 5.1 – К выводу понятия момента силы

Сила действует в плоскости, перпендикулярной оси. Перпендикуляр р , опущенный из точки О (лежащей на оси) на направление силы, назы­вают плечом силы . Произведение силы на плечо определяет модуль мо­мента силы относительно точки О :

(5.1)

Момент силы есть вектор, определяемый векторным произведением радиуса-вектора точки приложения силы и вектора силы :

(5.2)

Единица момента силы - ньютон-метр . м). Направление вектора момента силы находиться с помощью пра­вила правого винта .

Мерой инертности тел при поступательном движении является масса. Инертность тел при вращательном движении зависит не только от массы, но и от ее распределения в пространстве относительно оси вращения. Мерой инертности при вращательном движении служит величина, назы­ваемая моментом инерции тела относительно оси вращения.

Момент инерции материальной точки относительно оси враще­ния - произведение массы этой точки на квадрат расстояния от оси :

Момент инерции тела относительно оси вращения - сумма мо­ментов инерции материальных точек, из которых состоит это тело :

(5.4)

В общем случае, если тело сплошное и представляет собой совокуп­ность точек с малыми массами dm , момент инерции определяется интег­рированием:

, (5.5)

где r - расстояние от оси вращения до элемента массой dm .

Если тело однородно и его плотность ρ = m /V , то момент инерции тела

(5.6)

Момент инерции тела зависит от того, относительно какой оси оно вращается и как распределена масса тела по объему.

Наиболее просто определяется момент инерции тел, имеющих пра­вильную геометрическую форму и равномерное распределение массы по объему.

Момент инерции однородного стержня относительно оси, прохо­дящей через центр инерции и перпендикулярной стержню,

Момент инерции однородного цилиндра относительно оси, перпен­дикулярной его основанию и проходящей через центр инерции,

(5.8)

Момент инерции тонкостенного цилиндра или обруча относи­тельно оси, перпендикулярной плоскости его основания и проходящей через его центр,

Момент инерции шара относительно диаметра

(5.10)

Определим момент инерции диска относительно оси, проходящей че­рез центр инерции и перпендикулярной плоско­сти вращения. Пусть масса диска – m , а его радиус – R .

Площадь кольца (рисунок 5.2), заключенного между r и , равна .

Рисунок 5.2 – К выводу момента инерции диска

Площадь диска . При постоянной толщине кольца,

откуда или .

Тогда момент инерции диска,

Для наглядности на рисунке 5.3 изображены однородные твердые тела различной формы и указаны моменты инерции этих тел относительно оси, проходящей через центр масс.

Рисунок 5.3 – Моменты инерции I C некоторых однородных твердых тел.

Теорема Штейнера

Приведенные выше формулы для моментов инерции тел даны при усло­вии, что ось вращения проходит через центр инерции. Чтобы определить моменты инерции тела относительно произвольной оси, следует восполь­зоваться теоремой Штейнера : момент инерции тела относительно произвольной оси вращения равен сумме момента инерции J 0 отно­сительно оси, параллельной данной и проходящей через центр инер­ции тела, и величины md 2:

(5.12)

где m - масса тела, d - расстояние от центра масс до выбранной оси вра­щения. Единица момента инерции - килограмм-метр в квадрате (кг . м 2).

Так, момент инерции однородного стержня длиной l относительно оси, про­ходящей через его конец, по теореме Штейнера равен

Кто из нас не следил с удивлением и восторгом за тем, как эффектно фигуристы заканчивают свои выступления на ледяной арене? Они начинают вращаться, зафиксировав центр вращения одним коньком и отталкиваясь другим, широко разведя руки в стороны, достигают достаточно большой угловой скорости вращения, а затем быстро прижимают руки к телу. После этого их угловая скорость вращения резко возрастает.

Момент инерции тела относительно некоторой оси вращения определяется суммой моментов инерции совокупности материальных точек.

Изменяя движением рук момент инерции тела, фигуристка управляет скоростью вращения.

В чем же тут дело? Почему, лишь прижав руки к телу и не прикладывая больше никаких усилий, фигуристу удается резко увеличить угловую скорость своего вращения? Не опровергается ли этим закон сохранения энергии ? Конечно, нет. Объяснение описанного явления дает один из разделов ньютоновской механики - динамика твердого тела. Под твердым телом при этом понимается система частиц, взаимные расстояния между которыми не изменяются.

Оказывается, несмотря на сложность задачи о вращательном движении твердого тела, её можно свести к решению уравнений, по форме аналогичных уравнениям Ньютона для поступательного движения. Роль ускорения, силы и массы в этом случае играют угловое ускорение, момент силы и момент инерции. С этими важными понятиями можно познакомиться на простом примере движения одной материальной точки A массой m, которая удерживается на окружности радиуса r с помощью невесомого стержня. Пусть на точку $A$ действует постоянная сила $\overrightarrow{F}.$ Если в данный момент она составляет угол $α$ с радиус-вектором материальной точки $A,$ то её составляющая $F_r=F⋅\cos α$ просто сжимает стержень, а составляющая $F_t=F⋅\sin α$ приводит к появлению тангенциального ускорения $a_t,$ изменяющего величину скорости частицы. (Это ускорение направлено по касательной к траектории частицы. Его следует отличать от центростремительного ускорения, которое всегда направлено к центру вращения и меняет лишь направление вектора скорости частицы.)

Согласно второму закону Ньютона , для тангенциального ускорения можно записать:

$m⋅a_t=F_t=F⋅\sin α.$

По аналогии с угловой скоростью введем угловое ускорение $ε=\frac{a_t}{r}.$ Оно характеризует скорость изменения угловой скоростиω со временем. Тогда равенство (1) будет иметь вид:

$F⋅\sin α=m⋅r⋅\frac{a_t}{r}=m⋅r⋅ε.$

Умножив обе части этого уравнения на радиус, получим:

$F⋅r⋅\sin α=m⋅r^2⋅ε,$

или $M=J⋅ε.$

Величина $M=F⋅r⋅\sin α,$ численно равная произведению силы $F$ на длину перпендикуляра $d=r⋅\sin α,$ опущенного на направление силы из центра вращения (плечо силы), называется моментом силы относительно точки $O.$ Величину $J=m⋅r^2,$ равную произведению массы материальной точки $A$ на квадрат её расстояния до центра вращения, называют моментом инерции материальной точки относительно точки $O.$

В случае произвольного твердого тела момент инерции характеризуется распределением массы в этом теле и определяется суммой моментов инерции совокупности материальных точек, на которые можно разбить твердое тело:

$J=\sum\limits_{i=1}^{N}{\Delta {{m}_{i}}r_{i}^{2}},$

где $Δm_i$ - масса $i$‑й точки, $r_i$ - её расстояние до оси вращения.

Момент инерции служит мерой инертности тела при вращении и, таким образом, играет ту же роль, что и масса в случае поступательного движения. Однако в отличие от массы тела, которая при обычных условиях остается неизменной, момент инерции можно легко менять. Действительно, даже в рассмотренном выше простейшем случае материальной точки на стержне момент инерции зависел не только от величины массы, но и от того, как далеко она расположена от оси вращения. Поэтому, перемещая материальную точку по стержню от центра вращения, можно увеличивать инерцию вращения такой системы.

В зависимости от формы и выбранной оси вращения твердые тела одной и той же массы могут иметь различные моменты инерции. Так, момент инерции полого цилиндра радиуса $r$ относительно его оси симметрии равен $mr^2;$ однородного шара, вращающегося относительно оси, проходящей через его центр, - $\frac{2}{5}mr^2;$ однородного цилиндра, вращающегося относительно своей оси симметрии, - $\frac{1}{2}mr^2.$

И момент силы $\overrightarrow{M},$ и угловая скорость $\overrightarrow{ω},$ и угловое ускорение $\overrightarrow{ε}$ так же как и соответствующие им величины силы, скорости и ускорения при описании поступательного движения, являются векторами. Эти векторы направлены вдоль оси вращения (аксиальные векторы ), причем их направление определяется по правилу буравчика , т. е. совпадает с направлением поступательного движения буравчика, рукоятка которого вращается в том же направлении, что и тело.

Можно ввести еще один важный вектор: $L=J⋅\overrightarrow{ω},$ называемый моментом количества движения . Являясь аналогом импульса для вращательного движения, он обладает замечательным свойством: момент количества движения замкнутой системы остается постоянным по величине и направлению. Изменяется он только под воздействием приложенных к рассматриваемой системе нескомпенсированных моментов внешних сил.

Вернемся снова к началу этой статьи, где рассказывалось о вращающемся фигуристе. Пренебрегая малыми моментами действующих на него сил сопротивления, можно считать, что он представляет собой замкнутую систему. Поэтому достигнутый им при начальном разгоне момент количества движения $J_1⋅\overrightarrow{ω_1}$ должен сохраняться ($ω_1$ - его начальная угловая скорость, $J_1$ - момент инерции в положении с разведенными руками). Прижимая руки к телу, фигурист, очевидно, уменьшает свой момент инерции до некоторой величины $J_2$ и тем самым увеличивает свою угловую скорость: $ω_2=\frac{J_1}{J_2}.$ Однако в этот момент ему приходится «поработать», так как начальная кинетическая энергия его вращения была $\frac{J_1⋅ω_1^2}{2},$ а конечная становится $\frac{J_2⋅ω_2^2}{2}.$ Разность этих энергий и составляет величину работы фигуриста.

ОПРЕДЕЛЕНИЕ

Мерой инертности вращающегося тела является момент инерции (J) относительно оси, вокруг которой происходит вращение.

Это скалярная (в общем случае тензорная) физическая величина, которая равна произведению масс материальных точек () на которые следует провести разбиение рассматриваемого тела, на квадраты расстояний () от них до оси вращения:

где r - функция положения материальной точки в пространстве; - плотность тела; -объем элемента тела.

Для однородного тела выражение (2) можно представить как:

Момент инерции в международной системе единиц измеряется в:

Величина J входит в основные законы, при помощи которых описывают вращение твердого тела.

В общем случае величина момента инерции зависит от направления оси вращения, а так как в процессе движения вектор обычно изменяет свое направление относительно тела, то момент инерции следует рассматривать как функцию времени. Исключением является момент инерции тела, вращающегося вокруг неподвижной оси. В таком случае момент инерции остается постоянным.

Теорема Штейнера

Теорема Штейнера дает возможность вычислить момент инерции тела относительно произвольной оси вращения, когда является известным момент инерции рассматриваемого тела по отношению к оси, проходящей через центр масс этого тела и эти оси являются параллельными. В математическом виде теорема Штейнера представляется как:

где - момент инерции тела относительно оси вращения, проходящей через центр масс тела; m - масса, рассматриваемого тела; a- расстояние между осями. Обязательно следует помнить, что оси должны быть параллельны. Из выражения (4) следует, что:

Некоторые выражения для вычисления моментов инерции тела

При вращении вокруг оси материальная точка имеет момент инерции равный:

где m - масса точки; r - расстояние от точки до оси вращения.

Для однородного тонкого стержня массой m и длиной l J относительно оси, проходящей через его центр масс (ось перпендикулярна стержню), равен:

Тонкое кольцо, с массой вращающееся около оси, которая проходит через его центр, перпендикулярно плоскости кольца, то момент инерции вычисляется как:

где R - радиус кольца.

Круглый однородный диск, радиуса R и массы m имеет J относительно оси, проходящей через его центр и перпендикулярной плоскости диска, равный:

Для однородного шара

где m - масса шара; R - радиус шара. Шар вращается около оси, которая проходит через его центр.

Если осями вращения являются оси прямоугольной декартовой системы координат, то для непрерывного тела моменты инерции можно вычислить как:

где - координаты бесконечно малого элемента тела.

Примеры решения задач

ПРИМЕР 1

Задание Два шарика, которые можно считать точечными, скреплены тонким невесомым стержнем. Длина стержня l. Каков момент инерции данной системы, по отношению к оси, которая проходит перпендикулярно стержню через центр масс. Массы точек одинаковы и равны m.
Решение Найдем момент инерции одного шарика () относительно оси, находящейся от него на расстоянии :

Момент инерции второго шарика будет равен :

Суммарный момент инерции системы равен сумме:

Ответ

ПРИМЕР 2

Задание Каков момент инерции физического маятника относительно оси, которая проходит через точку O (рис.1)? Ось перепендикулярна плоскости рисунка. Считайте, что физический маятник состоит из тонкого стержня длины l, имеющего массу m и диска массы . Диск прикреплен к нижнему концу стержня и имеет радиус равный

Решение Момент инерции нашего маятника (J) будет равен сумме момента инерции стержня (), вращающегося относительно оси, проходящей через точку О и диска (), вращающегося вокруг той же оси:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение

высшего профессионального образования

«Дальневосточный федеральный университет»

Школа естественных наук

Определение моментов инерции тел вращения

методом крутильных колебаний. Проверка теоремы Гюйгенса – Штейнера.

Учебно-методическое пособие

к лабораторной работе № 1.3

Владивосток

УДК53(о76.5)

Определение моментов инерции тел вращения

      методом крутильных колебаний. Проверка теоремы Гюйгенса – Штейнера.

      Учебно-методическое пособие к лабораторной работе № 1.3 по дисциплине «физический практикум»// сост. В.Е.Полищук, Р.Ф.Полищук. – Владивосток: Издательский дом Дальневост. федерал. ун-та, 2013-с.12.

Пособие, подготовленное на кафедре общей физики Школы естественных наук ДВФУ, содержит методические указания к выполнению лабораторной работы по механике с целью экспериментального изучения момента инерции твердых тел вращения и проверки теоремы Гюйгенса-Штейнера.

Для студентов ДВФУ всех специальностей.

УДК 53(076.5)

Составители Полищук В.Е.

Полищук Р.Ф.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Дальневосточный федеральный университет» (ДВФУ)

Школа естественных наук

Определение моментов инерции тел вращения методом крутильных колебаний.

Проверка теоремы Гюйгенса-Штейнера.

Учебно-методическое пособие к лабораторной работе № 1.3

По дисциплине «физический практикум»

Владивосток

Издательский дом Дальневосточного федерального университета

Целью данной лабораторной работы является изучение законов ди­намики вращательного движения твердого тела, экспериментальное измере­ние момента инерции простейших тел вращения и проверка теоремы Гюй­генса-Штейнера.

Основные понятия вращательного движения твердого тела .

Кроме понятия материальной точки, в механике используется модель­ное понятие абсолютно твердого тела – тела, деформациями которого в условиях данной задачи можно пренебречь. Такое тело можно рассматривать как систему жестко закрепленных материальных точек.

Любое сложное движение твердого тела всегда можно разложить на два основных вида движения – поступательное и вращательное. Поступательным называ­ется такое движение твердого тела, при кото­ром любая прямая, проведенная через любые две точки тела, остается парал­лельной самой себе во все время движения (рис.1). При таком движении все точки твердого тела движутся совершенно одинаково, то есть имеют одну и ту же скорость, ускорение, траектории движения, совершают одинаковые пе­ремещения и проходят одинаковый путь. Следовательно, поступательное движение твердого тела можно рассматривать как движение материальной точки, масса которой равна массе тела m и применять к нему второй закон Ньютона динамики материальной точки, т.е.

где - результирующая всех внешних сил, действующих на тело, - им­пульс (количество движения) тела.

Вращательным движением твердого тела называется движение, при котором все точки тела описывают окружности, центры которых лежат на одной прямой, называемой осью вращения тела. При вращательном движении все точки тела движутся с одной и той же угловой скоростью и уг­ловым ускорением и совершают одинаковые угловые перемещения. Однако, как показывает опыт, при вращательном движении твердого тела вокруг за­крепленной оси, масса уже не является мерой его инертности, а сила – недо­статочна для характеристики внешнего воздействия. Кроме того, опыты по­казывают, что ускорение при вращательном движении зависит не только от массы тела, но и от ее распределения относительно оси вращения; зависит не только от силы, но и от точки ее приложения и направления действия. По­этому, для описания вращательного движения твердого тела введены новые динамические характеристики такие, как момент силы, момент импульса и момент инерции тела . При этом следует иметь в виду, что существует два разных понятия этих величин: относительно оси и относительно любой точки О (полюса, начала), взятой на этой оси.

Моментом силы относительно неподвижной точки О называ­ется векторная величина, равная векторному произведению радиус-вектора проведённого из точки О в точку приложения результирующей силы , на вектор этой силы:

Вектор момента силы всегда перпендикулярен плоскости, в которой распо­ложены вектора и , а его направление относительно этой плоскости определяется правилом векторного произведения или правилом буравчика. Согласно правила век-торного произведения, вектор направлен перпендику­лярно к плоскости, содержащей векторы и , в такую сторону, чтобы при рассматривании с его конца вектор мог быть совмещен с векто­ром путем вращения против часовой стрелки в сторону меньшего угла. Со­гласно правила правого буравчика (рис.2), при вращении его ручки в направ­лении от к в направлении меньшего угла a, поступательное движение буравчика определит направление вектора

При применении этих правил удобно начала векторов и совместить в одной точке. Можно, например, перенести вектор параллельно самому себе так, чтобы его начало совпало с началом вектора в точке 0 (на рис.2 этот вектор изображен пунктиром).

Вектора, направление которых связывают с направлением вращения (угловая скорость, угловое ускорение, момент силы, момент импульса и т.п.), называют псевдовекторами или аксиальными в отличие отобычных векто­ров (скорость, радиус-вектор, ускорение и т.п.), которые называют поляр­ными или истинными.

Величина вектора момента силы (численное значение момента силы) определяется согласно формуле векторного произведения (2), т.е. , где a - угол между направлениями векторов и . Вели­чина p= r·Sinα называется плечом силы (рис.2).Плечо силы р - это кратчай­шее расстояние от точки О до линии действия силы .

Моментом силы относительно оси , называется проекция на эту ось вектора момента силы, найденного относительно любой точки, принадлежа­щей этой оси. Ясно, что относительно оси момент силы является скалярной величиной. В системе СИ момент силы измеряется в Н·м. Для введения понятия момента импульса тела, введем сначала это по­нятие для материальной точки, принадлежащей вращающемуся твердому телу.

Моментом импульса материальной точки Δ m i относительно не­подвижной точки О называется векторное произведение радиус-вектора , проведенного из точки О в точку нахождения массы Δm i , на вектор импульса этой материаль­ной точки:

где - импульс материальной точки.

Моментом импульса твердого тела (или механической системы) относительно неподвижной точки О называется вектор , равный геомет­рической сумме моментов импульса относительно этой же точки О всех материальных точек данного тела, т.е. .

Моментом импульса твердого тела относительно оси называется проекция на эту ось вектора момента импульса тела относительно любой точки, выбранной на данной оси. Совершенно очевидно, в этом случае мо­мент импульса является скалярной величиной. В системе СИ момент им­пульса измеряется в .

Мерой инертности тел при поступательном движении является их масса. Инертность же тел при вращательном движении зависит не только от массы тела, но и от ее распределения в пространстве относительно оси вра­щения. Мерой инертности тела при вращательном движении является момент инерции тела I относительно оси вращения или точки. Момент инер­ции, как и масса, величина аддитивная, скалярная.

Моментом инерции тела относительно оси вращения называется физическая скалярная величина, равная сумме произведений масс матери­альных точек (на которые можно разбить все тело) на квадратырасстояний каждой из них до оси вращения:

где I -момент инерции материальной точки.

Моментом инерции тела относительно точки О называется скалярная величина, равная сумме произведений массы каждой материальной точки данного тела на квадрат ее расстояния до точки О. Рас­четная формула момента инерции аналогична формуле (4). В системе СИ момент инерции измеряется в кг·м 2 .

Момент инерции твердого тела зависит от массы тела, формы и раз­мера тела.

Основной закон динамики вращательного движения твердого тела .

Каждая из материальных точек вращающегося твердого тела будет двигаться по окружности в плоскости, перпендикулярной оси вращения, а центры всех этих окружностей будут лежать на этой оси. При этом все точки тела в данный момент времени имеют одинако­вую угловую скорость и одинаковое угловое ускорение.

Рассмотрим i-материальную точку, масса которой Δm i , а радиус окружности, по которой она движется, r i . На нее действуют как внешние силы со стороны других тел, так и внутренние силы - со стороны других материальных точек, принадлежащих этому же телу. Разложим результирующую силу , действующую на матери­альную точку массы Δm i , на две взаимно перпендикулярные состав­ляющие силыи , причем так, чтобы вектор силы совпадал по направ­лению с касательной к траектории движения частицы, а сила - пер­пендикулярна к этой касательной (Рис.3). Совершенно очевидно, что враще­ние данной материальной точки обусловлено только касательной составля­ющей силы , величину которой можно представить в виде суммы внутрен­ней и внешней сил. В этом случае для материальной точки Δm i второй закон Ньютона в скалярном виде будет иметь вид:

(5)

С учетом того, что при вращательном движении твердого тела вокруг оси, линейные скорости движения материальных точек по круговым траекто­риям различны по величине и направлению, а угловые скорости w для всех этих точек одинаковы (и по величине и направлению), заменим в уравнении (5) линейную скорость на угловую (v i =wr i):

. (6)

Введем в уравнение (6) момент силы, действующей на частицу. Для этого умножим левую и правую части уравнения (6) на радиус r i , который по от­ношению к результирующей силе является плечом:

(7)

Тогда получим:

где каждый член в правой части уравнения (8) есть момент соответствующей силы относительно оси вращения. Если в это уравнение ввести угловое уско­рение вращения материальной точки массы Δm i относительно оси (=) и ее момент инерции ΔI i относительно этой же оси(=ΔI i), то уравнение вращательного движения материальной точки относительно оси примет вид:

Аналогичные уравнения можно записать для всех других материальных точек, входящих в данное твердое тело. Найдем сумму этих уравнений с учетом того, что величина углового ускорения для всех материальных то­чек данного вращающегося тела будет одинаковой, получим:

Суммарный момент внутренних сил равен нулю, так как каждая внут­ренняя сила, согласно третьему закону Ньютона, имеет равную по вели­чине, но противоположно направленную себе силу, приложенную к другой материальной точке тела, с таким же плечом. Суммарный момент – есть вращающий момент М всех внешних сил, действующих на вращающе­еся тело. Сумма моментов инерции =I определяет момент инерции дан­ного тела относительно оси вращения. После подстановки указанных вели­чин в уравнение (10) окончательно получим:

Уравнение (11) называется основным уравнением динамики вращательного движения твердого тела относительно оси. Так как =, а момент инерции тела относительно данной оси вращения является постоянной величиной и, следовательно, его можно внести под знак дифференциала, то уравнение (11) можно записать в виде:

Величина Iw=L (13)

называется моментом импульса тела относительно оси. C учетом (13) урав­нение (12) можно записать в виде:

Уравнения (11-14) носят скалярный характер, и применяются только для описания вращательного движения тел относительно оси. При описании вращательного движения тел относительно точки (или полюса, или начала) , принадлежащей данной оси, указанные уравнения соответственно записываются в векторном виде:

(11 *); (12 *); (13 *); (14 *).

При сравнении уравнений поступательного (1) и вращательного (11-14) движений тела видно, что при вращательном движении вместо силы в урав­нениях стоит ее момент, вместо массы тела – момент его инерции, вместо импульса (или количества движения) – момент импульса (или момент коли­чества движения).

Из уравнений (14) и (14 *) следует, соответственно, уравнение моментов относительно оси и относительно точки:

dL=Mdt (15); (15 *) .

Согласно уравнению моментов относительно оси (15) – изменение мо­мента импульса тела dL относительно неподвижной оси равно моменту им­пульса внешней силы Mdt, действующей на тело относительно этой же оси. Относительно точки уравнение моментов (15 *) формулируется: изменение вектора момента импульса относительно точки равно импульсу момента вектора силы, действующего на тело, относительно этой же точки.

Из уравнений (15) и (15 *) вытекает закон сохранения момента им­пульса твердого тела как относительно оси, так и относительно точки. Из уравнения (15) следует: если суммарный момент всех внешних сил М отно­сительно оси равен нулю (M=0, следовательно и dL=0), то момент импульса этого тела относительно оси его вращения остается постоянной величиной (L=Const).

Относительно точки: если суммарный вектор момента всех внешних сил относительно точки вращения О остается неизменным, то вектор мо­мента импульса этого тела относительно этой же точки О остается постоян­ным.

В данной лабораторной работе определяются моменты инерции для про­стейших тел вращения. Под телом вращения понимается объемное тело, возникающее при вращении плоской фигуры, ограниченной произвольной кривой, вокруг оси, лежащей в той же плоскости. Тело вращения всегда имеет ось симметрии. Простейшими примерами тел вращения являются:

шар – образован полукругом, вращающимся вокруг диаметра разреза;

цилинд р – образован прямоугольником, вращающимся вокруг одной из его сторон;

конус – образован прямоугольным треугольником, вращающимся вокруг од­ного из его катетов и т.п.

В рассматриваемой лабораторной работе методом крутильных колеба­ний определяются моменты инерции для тел: сферы, диска, стержня, полого и сплошного цилиндров. Кроме того, экспериментально проверя­ется теорема Гюйгенса-Штейнера. Эта теорема позволяет определить момент инерции тела относительно любой оси, не проходящей через центр массы тела, если известен момент инерции данного тела относительно оси прохо­дящей через центр масс и параллельной относительно искомой оси.

Теорема Гюйгенса-Штейнера. Момент инерции тела относительно лю­бой оси, не проходящей через центр массы данного тела, равен моменту инерции этого тела относительно оси, проходящей через его центр массы и параллельной первой оси, плюс произведение массы данного тела на квадрат расстояния между этими осями: I = I o + mɑ 2 , где I – момент инерции тела от­носительно искомой оси, (не проходящей через центр массы тела), Iо мо­мент инерции тела относительно оси проходящей через центр массы и параллельной первой оси, m- масса тела, ɑ - расстояние между осями.

Вывод рабочей формулы для расчета момента инерции тел враще­ния методом крутильных колебаний.

Крутильный маятник в данной работе состоит из спиральной пружины, закрепленной в штативе. С пружиной жестко скреплена ось, свободно вра­щающаяся в штативе. На ось крепится тело, момент инерции которого опре­деляется. Если эту систему вывести из положения равновесия, повернув тело на некоторый угол φ и отпустить, то возникнут крутильные колебания тела. При крутильных колебаниях на тело действует возвращающий момент силы, приостанавливающий отклонение тела от состояния равновесия, а затем со­общающий телу обратное движение. Возвращающий момент силы М обусловлен упругими силами, возникающими в спиральной пружине.

Как показывают эксперименты, в области упругих деформаций круче­ния, угол поворота спиральной пружины прямо пропорционален проекции момента силы М на ось вращения z (М z), т.е.

М z = - G·φ (16).

Коэффициент пропорциональности G называется угловым коэффициентом упругости спиральной пружины. Из уравнения (11) следует: М z = I z ·, где = - угловое ускорение, I z – момент инерции тела относительно вращающейся оси установки. Следовательно,

М z = I z · (17).

Из (16) и (17) следует равенство: I z · = - G·φ. Или

Уравнение (17) является дифференциальным уравнением гармонических колебаний, которое можно переписать в следующем виде

+ω 2 φ = 0, (19)

где ω 2 = (20)

Уравнение (18) соответствует гармоническому осциллятору и описывает его гармонические колебания, в данном случае колебания углового смещения маятника относительно его положения равновесия. Из решения дифференциального уравнения (18) следует, что колебания крутильного маятника яв­ляются гармоническими φ = φ о ·Sin(ω·t +α), где φ о – амплитуда углового сме­щения, равная начальному угловому отклонению маятника, а ω- цикличе­ская частота колебаний, которая связана с периодом колебаний соотношением

Из уравнений (20) и (21) вытекает рабочая формула эксперименталь­ного определения момента инерции I z для предложенных тел вращения и проверки теоремы Гюйгенса – Штейнера:

I z =I= , (22)

Подготовка и выполнение лабораторной работы.

Рис.4 Общий вид экспериментальной установки и исследуемых тел.

Как видно из рабочей формулы (22) основными параметрами при экспе­риментальном определении моментов инерции указанных выше тел, яв­ляется период колебаний тела Т и угловой коэффициент упругости спиральной пружины G. В данной лабораторной работе угловой коэффициент экспериментально уже определен по методике, описанной на стр.12 и имеет значение

Измерение моментов инерции тел

1. На все исследуемые тела прикрепите узкий листок бумаги, шириной не более 3 мм. (рис.5).

2. Закрепите исследуемое тело на вращающемся валу, скрепленном с пружи­ной.

3.Установите штатив с пружиной и закрепленным твердым телом так, чтобы листок находился под световым барьером (рис.5).

4. Для светового барьера выберите режим измерений .

5. Отклоните исследуемое тело от положения равновесия приблизительно на 90 о и отпустите его, предварительно нажав на кнопку «Set» датчика светового барьера. Световой барьер измерит промежуток времени, равный периоду колебаний системы.

6. Для проведения повторных измерений сбросьте показания счетчика свето­вого барьера, нажав на кнопку «Set». Через последующий цикл колебатель­ного движения датчик вновь покажет значение периода колебаний системы.

7. Для каждого исследуемого тела сделать 5-7 измерений периода колебаний. По формуле (22) рассчитать моменты инерции исследуемых тел, Для каждого тела данные измерений заносить в отдельную таблицу. Определить средние значения и довери­тельный интервал для каждого исследованного тела. При расчете моментов инерции тел использовать (предварительно экспериментально найденную) величину углового коэффициента упругости спиральной пружины, равной: G =0,0241±0,0009 Н·М/РАД.

Таблица № 1. Определение момента инерции однородного цилиндра.


Top